Цель История Правильные многогранники Виды правильных многогранников - ТетраэдрТетраэдр - КубКуб - ОктаэдрОктаэдр - ДодекаэдрДодекаэдр - ИкосаэдрИкосаэдр. Презентация "правильные многогранники" презентация к уроку по геометрии на тему Скачать презентацию

Cлайд 1

Cлайд 2

СИММЕТРИЯ В ПРОСТРАНСТВЕ “Симметрия является той идеей, посредством которой человек пытался постичь и создать порядок, красоту и совершенство” (Г.Вейль) Симметрия («соразмерность») - соответствие, неизменность (инвариантность), проявляемая при каких-либо преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы, сохраняя одну точку на месте. «Витрувианский человек» Ленардо Да Винчи (1490,Венеция)

Cлайд 3

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА1. Точка О считается симметричной самой себе. А А1

Cлайд 4

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А1 называются симметричными относительно прямой (ось симметрии), если прямая проходит через середину отрезка АА1 и перпендикулярна этому отрезку. Каждая точка прямой а считается симметричной самой себе. А1

Cлайд 5

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А1 называются симметричными относительно плоскости (плоскость симметрии), если эта плоскость проходит через середину отрезка АА1 и перпендикулярна этому отрезку. Каждая точка плоскости считается симметричной самой себе

Cлайд 6

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией

Cлайд 7

ПРИМЕРЫ СИММЕТРИИ ПЛОСКИХ ФИГУР Параллелограмм имеет только центральную симметрию. Его центр симметрии – точка пересечения диагоналей Равнобокая трапеция имеет только осевую симметрию. Её ось симметрии – перпендикуляр, проведенный через середины оснований трапеции Ромб имеет и центральную, и осевую симметрию. Его ось симметрии – любая из его диагоналей; центр симметрии – точка их пересечения

Cлайд 8

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ - 5 ПЛАТОНОВЫХ ТЕЛ Обитатели даже самой отдаленной галактики не могут играть в кости, имеющие форму неизвестного нам правильного выпуклого многогранника. М. Гарднер Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер. Также все ребра правильного многоугольника равны, как и все двугранные углы, содержащие две грани с общим ребром. Правильного многогранника, гранями которого являются n-угольники при n > или = 6, не существует!

Cлайд 9

ПРАВИЛЬНЫЙ ТЕТРАЭДЕР Составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Сумма плоских углов при каждой вершине ровна 180°. Элементы симметрии: Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии. S полн Объем Высота Вершин – 4 Граней – 6 Ребер – 4

Cлайд 10

КУБ Составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Сумма плоских углов при каждой вершине ровна 270°. 6 граней, 8 вершин и 12 ребер Элементы симметрии: Куб имеет центр симметрии - центр куба, 9 осей и плоскостей симметрии R опис. окр. S полн r впис. окр

Cлайд 11

ПРАВИЛЬНЫЙ ОКТАЭДР Составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 240°. Элементы симметрии: Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии 8 граней 6 вершин 12 ребер

Выполнила студентка группы Г 2-9 Н.Ю. Коблюк

Руководитель Е.В. Морозова

Тула 2010


«Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства»

Бертран Рассел


Многогранник называется правильным , если:

  • Он выпуклый.
  • Все его грани являются равными правильными многоугольниками.
  • В каждой его вершине сходится одинаковое число граней.
  • Все его двухгранные углы равны.

Существует всего пять правильных многогранников :

  • Тетраэдр (четырёхгранник)
  • Куб (шестигранник)
  • Октаэдр (восьмигранник)
  • Додекаэдр (двенадцатигранник)
  • Икосаэдр (двадцатигранник)

Правильный многогранник - это выпуклый многогранник с максимально возможной симметрией.


С древнейших времен наши представления о красоте связаны с симметрией. Наверное, этим объясняется интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей.

История правильных многогранников уходит в глубокую древность. Изучением правильных многогранников занимались Пифагор и его ученики. Их поражала красота, совершенство, гармония этих фигур. Пифагорейцы считали правильные многогранники божественными фигурами и использовали в своих философских сочинениях.


Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона (427-347 до н. э.) «Тимаус».

Поэтому правильные многогранники также называются платоновыми телами. Каждый из правильных многогранников, а всего их пять, Платон ассоциировал с четырьмя «земными» элементами: земля (куб), вода (икосаэдр), огонь (тетраэдр), воздух (октаэдр), а также с «неземным» элементом - небом (додекаэдр).


Ко времени Платона в античной философии созрела концепция четырех элементов (стихий) – первооснов материального мира: огня , воздуха , воды и земли .

Форма куба – атомы земли, т.к. и земля, и куб отличаются неподвижностью и устойчивостью.

Форма икосаэдра – атомы воды, т.к. вода отличается своей текучестью, а из всех правильных тел икосаэдр – наиболее «катящийся».


Форма октаэдра – атомы воздуха, ибо воздух движется взад и вперед, и октаэдр, как бы направлен одновременно в разные стороны.

Форма тетраэдра – атомы огня, т.к. тетраэдр наиболее остр, кажется, что он мечется в разные стороны.

Платон вводит пятый элемент – «пятую сущность» - мировой эфир, атомам которого придается форма додекаэдра как наиболее близкому к шару.


Платоновыми телами называются правильные однородные выпуклые многогранники, то есть выпуклые многогранники, все грани и углы которых равны, причем грани - правильные многоугольники.

Платоновы тела - трехмерный аналог плоских правильных многоугольников. Однако между двумерным и трехмерным случаями есть важное отличие: существует бесконечно много различных правильных многоугольников, но лишь пять различных правильных многогранников.

около 429 – 347 гг до н.э.


выпуклый многогранник, грани которого являются правильными

многоугольниками с одним и тем же числом сторон и в каждой

вершине которого сходится одно и то же число ребер.

Икосаэдр

Тетраэдр

Октаэдр

Гексаэдр

Додекаэдр


Тело Платона

Геометрия грани

Число

Тетраэдр

Икосаэдр

Гексаэдр

Додекаэдр

Формула Эйлера Г + В – Р = 2


Поверхность тетраэдра состоит из четырех равносторонних треугольников, сходящихся в каждой вершине по три.

У правильного тетраэдра все грани являются равносторонними треугольниками, все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны.


Свойства тетраэдра :

  • В тетраэдр можно вписать октаэдр, притом четыре (из восьми) грани октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра.
  • Тетраэдр с ребром х состоит из одного вписанного октаэдра (в центре) с ребром х/2 и четырёх тетраэдров (по вершинам) с ребром х/2.
  • Тетраэдр можно вписать в куб двумя способами, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба.

Все шесть рёбер тетраэдра будут лежать на всех шести гранях куба и равны диагонали грани-квадрата.

  • Тетраэдр можно вписать в икосаэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.

Правильный многогранник

Правильный треугольник

Граней при вершине

Длина ребра

Площадь поверхности


Элементы симметрии:

Тетраэдр не имеет центра симметрии,

но имеет 3 оси симметрии и 6 плоскостей симметрии

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности:

Объем тетраэдра:


Куб или гексаэдр - правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы. Куб имеет шесть квадратных граней, сходящихся в каждой вершине по три.


Свойства куба :

  • В куб можно вписать тетраэдр двумя способами, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба. Все шесть рёбер тетраэдра будут лежать на всех шести гранях куба и равны диагонали грани-квадрата.
  • Четыре сечения куба являются правильными шестиугольниками - эти сечения проходят через центр куба перпендикулярно четырём его диагоналям.
  • В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
  • Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми гранях октаэдра.
  • В куб можно вписать икосаэдр, при этом, шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба.

Правильный многогранник

Граней при вершине

Длина ребра

Площадь поверхности


Элементы симметрии:

Куб имеет центр симметрии - центр куба, 9 осей

симметрии и 9 плоскостей симметрии .

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности куба:

Объем куба:

S = 6 a 2

V =a 3


Окта́эдр - один из пяти правильных многогранников.

Октаэдр имеет 8 граней (треугольных),

12 рёбер, 6 вершин (в каждой вершине сходятся 4 ребра).

Октаэдр имеет восемь треугольных граней, сходящихся в каждой вершине по четыре .


Свойства октаэдра :

  • Октаэдр можно вписать в тетраэдр, притом четыре (из восьми) грани октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра.
  • Октаэдр с ребром у состоит из 6 октаэдров (по вершинам) с ребром у:2 и 8 тетраэдров (по граням) с ребром у:2
  • Октаэдр можно вписать в куб, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
  • В октаэдр можно вписать куб, притом все восемь вершин куба будут расположены в центрах восьми гранях октаэдра.

Правильный многогранник

треугольник

Граней при вершине

Двойственный многогранник


Элементы симметрии:

Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности:

Объем октаэдра:


Икоса́эдр - правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин - 12. Поверхность икосаэдра состоит из двадцати равносторонних треугольников, сходящихся в каждой вершине по пять.


Свойства :

  • Икосаэдр можно вписать в куб, при этом, шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба
  • В икосаэдр может быть вписан тетраэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.
  • Икосаэдр можно вписать в додекаэдр притом, вершины икосаэдра будут совмещены с центрами граней додекаэдра.
  • В икосаэдр можно вписать додекаэдр притом, вершины додекаэдра будут совмещены с центрами граней икосаэдра.

Правильный многогранник

Правильный треугольник

Граней при вершине

Двойственный многогранник

додекаэдр


Элементы симметрии:

Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности:

Объем икосаэдра:


Додека́эдр (двенадцатигранник) - правильный многогранник, объёмная геометрическая фигура, составленная из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Имеет двенадцать пятиугольных граней, сходящихся в вершинах по три.


Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра. Сумма плоских углов при каждой из 20 вершин равна 324°.

Додекаэдр применяется как генератор случайных чисел (вместе с другими костями) в настольных ролевых играх.

Правильный многогранник

Правильный пятиугольник

Граней при вершине

Двойственный многогранник

икосаэдр


Элементы симметрии:

Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности:

Объем додекаэдра:

Правильные многогранники встречаются в живой природе. Например, скелет одноклеточного организма феодарии ( Circjgjnia icosahtdra ) по форме напоминает икосаэдр.

Чем же вызвана такая природная геометризация феодарий? По-видимому, тем, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.

Правильные многогранники – самые «выгодные» фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов.

Взять хотя бы поваренную соль, без которой мы не можем обойтись. Известно, что она растворима в воде, служит проводником электрического тока. А кристаллы поваренной соли ( NaCl ) имеют форму куба.

При производстве алюминия пользуются алюминиево-калиевыми кварцами ( K [ Al ( SO 4 ) 2 ] 12 H 2 O ), монокристалл которых имеет форму правильного октаэдра.

Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана ( FeS ). Кристаллы этого химического вещества имеют форму додекаэдра.

В разных химических реакциях применяется сурьменистый сернокислый натрий ( Na 5 ( SbO 4 ( SO 4 )) – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра.

Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора (В). В своё время бор использовался для создания полупроводников первого поколения.

Феодария

( Circjgjnia icosahtdra )


«Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук»

Л. Кэрролл


Использовались материалы:

http://www.vschool.ru

http://center.fio.ru

http://gemsnet.ru

http://alzl.narod.ru

http://ru.wikipedia.org

Использовались

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Многогранник – это такое тело, поверхность которого состоит из конечного числа плоских многоугольников.

Правильные многогранники

Сколько существует правильных многогранников? - Как они определяются, какими свойствами обладают? -Где встречаются, имеют ли практическое применение?

Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер.

«эдра» - грань «тетра» - четыре гекса» - шесть «окта» - восемь «додека» - двенадцать «икоса» - двадцать Названия этих многогранников пришли из Древней Греции и в них указано число граней.

Название правильного многогранника Вид грани Число вершин ребер граней граней, сходящихся в одной вершине Тетраэдр Правильный треугольник 4 6 4 3 Октаэдр Правильный треугольник 6 12 8 4 Икосаэдр Правильный треугольник 12 30 20 5 Куб (гексаэдр) Квадрат 8 12 6 3 Додекаэдр Правильный пятиугольник 20 30 12 3 Данные о правильных многогранниках

Вопрос (проблема): Сколько существует правильных многогранников? Как установить их количество?

α n = (180 °(n -2)) : n При каждой вершине многогранника не меньше трех плоских углов, и их сумма должна быть меньше 360 ° . Форма граней Количество граней при одной вершине Сумма плоских углов при вершине многогранника Вывод о существовании многогранника α = 3 α = 4 α = 5 α = 6 α = 3 α = 4 α = 3 α = 4 α = 3

Л. Кэрролл

Великие математики древности Архимед Евклид Пифагор

Подробно описал свойства правильных многогранников древнегреческий ученый Платон. Именно поэтому правильные многогранники называются тела Платона

тетраэдр - огонь куб - земля октаэдр - воздух икосаэдр - вода додекаэдр - вселенная

Многогранники в науках о космосе и земле

Иоганн Кеплер (1571-1630) – немецкий астроном и математик. Один из создателей современной астрономии - открыл законы движения планет (законы Кеплера)

кубок Кеплера Космический

" Экосаэдро - додекаэдровая структура Земли "

Многогранники в искусстве и архитектуре

Альбрехт Дюрер (1471-1528) «Меланхолия»

Сальвадор Дали «Тайная Вечеря»

Современные архитектурные сооружения в виде многогранников

Александрийский маяк

Кирпичный многогранник швейцарского архитектора

Современное здание в Англии

Многогранники в природе ФЕОДАРИЯ

Пирит (сернистый колчедан) Монокристалл алюмокалиевых квасцов Кристаллы красной медной руды ПРИРОДНЫЕ КРИСТАЛЛЫ

Поваренная соль состоит из кристаллов в форме куба Минерал сильвин также имеет кристаллическую решетку в форме куба. Молекулы воды имеют форму тетраэдра. Минерал куприт образует кристаллы в форме октаэдров. Кристаллы пирита имеют форму додекаэдра

Алмаз В форме октаэдра кристаллизуются алмаз, хлорид натрия, флюорит, оливин и другие вещества.

Исторически первой формой огранки, появившейся в XIV веке стал октаэдр. Алмаз Шах Масса алмаза 88,7 карата

Задача Английская королева дала указание сделать огранку вдоль ребер алмаза золотой нитью. Но огранка не была сделана, так как ювелир не сумел рассчитать максимальную длину золотой нити, а сам алмаз ему не показали. Ювелиру были сообщены следующие данные: число вершин В=54, число граней Г=48, длина наибольшего ребра L= 4мм. Найти максимальную длину золотой нити.

Правильный многогранник Число Граней Вершин Рёбер Тетраэдр 4 4 6 Куб 6 8 12 Октаэдр 8 6 12 Додекаэдр 12 20 30 Икосаэдр 20 12 30 Исследовательская работа «Формула Эйлера»

Теорема Эйлера. Для любого выпуклого многогранника В + Г - 2 = Р где В – число вершин, Г – число граней, Р – число ребер этого многогранника.

ФИЗМИНУТКА!

Задача Найдите угол между двумя ребрами правильного октаэдра, которые имеют общую вершину, но не принадлежат одной грани.

Задача Найти высоту правильного тетраэдра с ребром 12 см.

Кристалл имеет форму октаэдра, состоящего из двух правильных пирамид с общим основанием, ребро основания пирамиды 6 см. высота октаэдра 8 см. Найдите площадь боковой поверхности кристалла

Площадь поверхности Тетраэдр Икосаэдр Додекаэдр Гексаэдр Октаэдр

Задание на дом: mnogogranniki.ru Пользуясь развертками изготовить модели 1-го правильного многогранника со стороной 15 см, 1-го полуправильного многогранника

Спасибо за работу!




Содержание: Цель пректа Цель пректа Цель пректа Цель пректа Термин Многогранники Термин Многогранники Термин Многогранники Термин Многогранники История История История Платон Платон Платон Платоновы тела Платоновы тела Платоновы тела Платоновы тела Евклид Евклид Евклид Архимед Архимед Архимед Архимедовы тела Архимедовы тела Архимедовы тела Архимедовы тела Иоганн Кеплер Иоганн Кеплер Иоганн Кеплер Иоганн Кеплер Космологическая гипотеза Кеплера Космологическая гипотеза Кеплера Космологическая гипотеза Кеплера Космологическая гипотеза Кеплера Тетраэдр Тетраэдр Тетраэдр Икосаэдр Икосаэдр Икосаэдр Додекаэдр Додекаэдр Додекаэдр Гексаэдр(куб) Гексаэдр(куб) Гексаэдр(куб) Октаэдр Октаэдр Октаэдр Частный случай Частный случай Частный случай Частный случай Развёртки правильных многогранников Развёртки правильных многогранников Развёртки правильных многогранников Развёртки правильных многогранников Теорема Теорема Теорема Таблица хар-к Таблица хар-к Таблица хар-к Таблица хар-к Полуправильные многогранники Полуправильные многогранники Полуправильные многогранники Полуправильные многогранники Нахождение в природе Нахождение в природе Нахождение в природе Нахождение в природе Историческая справка Интересные факты Интересные факты Интересные факты Интересные факты




Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер и все двугранные углы равны. Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер и все двугранные углы равны.


История правильных многогранников Их изучали ученые, ювелиры, священники, архитекторы. Этим многогранникам даже приписывали магические свойства. Древнегреческий ученый и философ Платон (IV–V в до н. э.) считал, что эти тела олицетворяют сущность природы. В своем диалоге «Тимей» Платон говорит, что атом огня имеет вид тетраэдра, земли – гексаэдра (куба), воздуха – октаэдра, воды – икосаэдра. В этом соответствии не нашлось места только додекаэдру и Платон предположил существование еще одной, пятой сущности – эфира, атомы которого как раз и имеют форму додекаэдра. Ученики Платона продолжили его дело в изучении перечисленных тел. Поэтому эти многогранники называют платоновыми телами. Их изучали ученые, ювелиры, священники, архитекторы. Этим многогранникам даже приписывали магические свойства. Древнегреческий ученый и философ Платон (IV–V в до н. э.) считал, что эти тела олицетворяют сущность природы. В своем диалоге «Тимей» Платон говорит, что атом огня имеет вид тетраэдра, земли – гексаэдра (куба), воздуха – октаэдра, воды – икосаэдра. В этом соответствии не нашлось места только додекаэдру и Платон предположил существование еще одной, пятой сущности – эфира, атомы которого как раз и имеют форму додекаэдра. Ученики Платона продолжили его дело в изучении перечисленных тел. Поэтому эти многогранники называют платоновыми телами.


Платон около 429 – 347 гг до н.э. Платоновыми телами называются правильные однородные выпуклые многогранники, то есть выпуклые многогранники, все грани и углы которых равны, причем грани - правильные многоугольники. Платоновы тела - трехмерный аналог плоских правильных многоугольников. Однако между двумерным и трехмерным случаями есть важное отличие: существует бесконечно много различных правильных многоугольников, но лишь пять различных правильных многогранников. Доказательство этого факта известно уже более двух тысяч лет; этим доказательством и изучением пяти правильных тел завершаются "Начала" Евклида.




«Начала Евклида. «…в науке нет царского пути» около 365 – 300 гг. до н.э. Главный труд Евклида – «Начала» (в оригинале «Стохейа». «Начала» состоят из 13 книг, позднее к ним были прибавлены ещё 2. Первые шесть книг посвящены планиметрии. Книги VII – X содержат теорию чисел, XI, XII и XIII книги «Начал» посвящены стереометрии. Из постулатов Евклида видно, что он представлял пространство как пустое, безграничное, изотропное и трёхмерное. Интересно, что «Начала» Евклида открываются описанием построения правильного треугольника и заканчиваются изучением пяти правильных многогранных тел! В наше время они известны как платоновы тела.


Архимед Сиракузский около 287 – 212 гг. до н.э. Математик, физик и инженер Архимед Сиракузский оставил после себя немало изобретений, тринадцать сочинений (таких как «О сфере и цилиндре», «Измерение круга», «Равновесие плоскостей», «Стомахион», «Правильный семиугольник и другие). Архимед, как геометр определил поверхность шара и его объём, исследовал параболоиды и гиперболоиды, изучал «архимедову спираль», определил число «пи», как находящееся между 3,141 и 3,142. Вклад Архимеда в теорию многогранников - описание 13 полуправильных выпуклых однородных многогранников (архимедовых тел).


Архимедовы тела Множество архимедовых тел можно разбить на несколько групп. Первую из них составят пять многогранников, которые получаются из платоновых тел в результате их усечения. Так могут быть получены пять архимедовых тел: усечённый тетраэдр, усечённый гексаэдр (куб), усечённый октаэдр, усечённый додекаэдр и усечённый икосаэдр. Другую группу составляют всего два тела, именуемых также квазиправильными многогранниками. Эти два тела носят названия:кубооктаэдр и икосододекаэдр в отличие от большого ромбокубооктаэдра и большого ромбоикосододекаэдра. Два последующих многогранника называются ромбокубооктаэдром и ромбоикосододекаэдром. Иногда их называют также «малым ромбокубооктаэдром» и «малым ромбоикосододекаэдром» в отличие от большого ромбокубооктаэдра и большого ромбоикосододекаэдра. Наконец существуют две так называемые «курносые» модификации одна для куба, другая для додекаэдра. Для каждой из них характерно несколько повёрнутое положение граней, что даёт возможность построить два различных варианта одного и того же «курносого» многогранника (каждый из них представляет собой как бы зеркальное отражение другого).


Иоганн Кеплер 1571 – 1630 гг. Немецкий астроном и математик. Один из создателей современной астрономии. Немецкий астроном и математик. Один из создателей современной астрономии. Вклад Кеплера в теорию многогранника - это, во-первых, восстановление математического содержания утерянного трактата Архимеда о полуправильных выпуклых однородных многогранниках. Вклад Кеплера в теорию многогранника - это, во-первых, восстановление математического содержания утерянного трактата Архимеда о полуправильных выпуклых однородных многогранниках. Еще более существенным было предложение Кеплера рассматривать невыпуклые многогранники со звездчатыми гранями, подобными пентаграмме и последовавшее за этим открытие двух правильных невыпуклых однородных многогранников - малого звездчатого додекаэдра и большого звездчатого додекаэдра. Еще более существенным было предложение Кеплера рассматривать невыпуклые многогранники со звездчатыми гранями, подобными пентаграмме и последовавшее за этим открытие двух правильных невыпуклых однородных многогранников - малого звездчатого додекаэдра и большого звездчатого додекаэдра.


Космологическая гипотеза Кеплера Кеплер попытался связать со свойствами правильных многогранников некоторые свойства Солнечной системы. Он предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каждой парой "небесных сфер", по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр. Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна..




Тетраэдр Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра У него 4 вершины,4 грани,6 ребер У него 4 вершины,4 грани,6 ребер Сумма плоских углов при каждой вершине равна 180 градусов Сумма плоских углов при каждой вершине равна 180 градусов




Икосаэдр (состоит из 20 треугольников) (состоит из 20 треугольников) В каждой вершине икосаэдра В каждой вершине икосаэдра сходятся пять граней. сходятся пять граней. Существует правильный многогранник, у которого все грани – правильные треугольники, и из каждой вершины выходит 5 ребер. Этот многогранник имеет 20 граней, 30 ребер, 12 вершин и называется икосаэдром (icosi – двадцать). Существует правильный многогранник, у которого все грани – правильные треугольники, и из каждой вершины выходит 5 ребер. Этот многогранник имеет 20 граней, 30 ребер, 12 вершин и называется икосаэдром (icosi – двадцать). Сумма плоских углов при каждой вершине равна 300 градусов Сумма плоских углов при каждой вершине равна 300 градусов




Додекаэдр Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать). Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать). Сумма плоских углов при каждой вершине равна 324 градуса Сумма плоских углов при каждой вершине равна 324 градуса




Гексаэдр(куб) Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра. Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра. У него 6 граней,8 вершин,12 ребер У него 6 граней,8 вершин,12 ребер Сумма плоских углов при каждой вершине равна 270 градусов Сумма плоских углов при каждой вершине равна 270 градусов




Октаэдр Октаэдр. Это правильный многогранник, все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани Октаэдр. Это правильный многогранник, все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани У него 8 граней,12 ребер,6вершин У него 8 граней,12 ребер,6вершин










Характеристики многогранников. Название:Число ребер при вершине Число сторон грани Число граней Число ребер Число вершин Тетраэдр33464 Куб Октаэдр Додекаэдр Икосаэдр




Полуправильные многогранники Курносый куб. Этот многогранник можно вписать в куб таким образом, что плоскости шести квадратных его граней совпадут с плоскостями граней куба, причем эти квадратные грани курносого куба окажутся как бы слегка повернутыми по отношению к соответственным граням куба. Курносый куб. Этот многогранник можно вписать в куб таким образом, что плоскости шести квадратных его граней совпадут с плоскостями граней куба, причем эти квадратные грани курносого куба окажутся как бы слегка повернутыми по отношению к соответственным граням куба. Ромбоикосододекаэдр. Эта модель принадлежит к числу наиболее привлекательных среди всех других моделей архимедовых тел. Гранями являются треугольники, квадраты и пятиугольники. Ромбоикосододекаэдр. Эта модель принадлежит к числу наиболее привлекательных среди всех других моделей архимедовых тел. Гранями являются треугольники, квадраты и пятиугольники. Ромбоусеченный кубооктаэдр. Этот многогранник, известный также под названием усеченного кубооктаэдра, гранями имеет квадраты, шестиугольники и восьмиугольники. Ромбоусеченный кубооктаэдр. Этот многогранник, известный также под названием усеченного кубооктаэдра, гранями имеет квадраты, шестиугольники и восьмиугольники. Курносый додекаэдр – это последний из семейства выпуклых однородных многогранников. Гранями являются треугольники и пятиугольники. Курносый додекаэдр – это последний из семейства выпуклых однородных многогранников. Гранями являются треугольники и пятиугольники.


Ромбододекаэдр. (пролуправильные тела) Он образован помощью семи кубов, образующих пространственный "крест« и додекаэдра.






Нахождение в природе В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Для наглядного представления таких структур используются пространственные кристаллические решетки, в узлах которых располагаются центры атомов или молекул данного вещества. Чаще всего кристаллическая решетка строится из ионов (положительно и отрицательно заряженных) атомов, которые входят в состав молекулы данного вещества. Например, решетка поваренной соли содержит ионы Na+ и Cl–, не объединенные попарно в молекулы NaCl. Такие кристаллы называются ионными. В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Для наглядного представления таких структур используются пространственные кристаллические решетки, в узлах которых располагаются центры атомов или молекул данного вещества. Чаще всего кристаллическая решетка строится из ионов (положительно и отрицательно заряженных) атомов, которые входят в состав молекулы данного вещества. Например, решетка поваренной соли содержит ионы Na+ и Cl–, не объединенные попарно в молекулы NaCl. Такие кристаллы называются ионными.


Кристаллы Кристаллические решетки металлов часто имеют форму шестигранной призмы (цинк, магний), гранецентрированного куба (медь, золото) или объемно центрированного куба (железо). Кристаллические решетки металлов часто имеют форму шестигранной призмы (цинк, магний), гранецентрированного куба (медь, золото) или объемно центрированного куба (железо). Кристаллические тела могут быть монокристаллами и поликристаллами. Поликристаллические тела состоят из многих сросшихся между собой хаотически ориентированных маленьких кристалликов, которые называются кристаллитами. Большие монокристаллы редко встречаются в природе и технике. Чаще всего кристаллические твердые тела, в том числе и те, которые получаются искусственно, являются поликристаллами. Кристаллические тела могут быть монокристаллами и поликристаллами. Поликристаллические тела состоят из многих сросшихся между собой хаотически ориентированных маленьких кристалликов, которые называются кристаллитами. Большие монокристаллы редко встречаются в природе и технике. Чаще всего кристаллические твердые тела, в том числе и те, которые получаются искусственно, являются поликристаллами.. Простые кристаллические решетки: 1 – простая кубическая решетка; 2 – гранецентрированная кубическая решетка; 3 – объемноцентрированная кубическая решетка; 4 – гексагональная решетка.


Кристаллы - многогранники Кальций. При ударах кристаллы кальцита раскалываются правильные фигурки, каждая грань которых имеет форму параллелограмма. Кальций образует разнообразные кристаллы от пластичной до вытянуто- призматичной формы. Кальций. При ударах кристаллы кальцита раскалываются правильные фигурки, каждая грань которых имеет форму параллелограмма. Кальций образует разнообразные кристаллы от пластичной до вытянуто- призматичной формы. Апатит. Они образуют кристаллы в форме прямоугольной призмы. Апатит. Они образуют кристаллы в форме прямоугольной призмы. Бериллий. Обычно встречается в виде столбчатых шестигранных кристаллов. Бериллий. Обычно встречается в виде столбчатых шестигранных кристаллов.


История правильных многогранников уходит в глубокую древность. Начиная с 7 века до нашей эры в Древней Греции создаются философские школы, в которых происходит постепенный переход от практической к философской геометрии. Большое значение в этих школах приобретают рассуждения, с помощью которых удалось получать новые геометрические свойства. Историческая справка Одной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора. Отличительным знаком пифагорейцев была пентаграмма, на языке математики- это правильный невыпуклый или звездчатый пятиугольник. Пентаграмме присваивалось способность защищать человека от злых духов.


Земля земля гексаэдр гексаэдр (куб) (куб) вселенная вселеннаяДодекаэдр Пифагорейцы, а затем Платон полагали, что материя состоит из четырех основных элементов: огня, земли, воздуха и воды. Существование пяти правильных многогранников они относили к строению материи и Вселенной. Согласно этому мнению, атомы основных элементов должны иметь форму различных Платоновых тел:




Художники о правильных многогранниках В эпоху Возрождения большой интерес к формам правильных многогранников проявляли скульпторы, архитекторы, ХУДОЖНИКИ. Леонардо да Винчи увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал изображениями правильных и полуправильных многогранников книгу своего друга, монаха Луки Пачоли «О божественной пропорции» В эпоху Возрождения большой интерес к формам правильных многогранников проявляли скульпторы, архитекторы, ХУДОЖНИКИ. Леонардо да Винчи увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал изображениями правильных и полуправильных многогранников книгу своего друга, монаха Луки Пачоли «О божественной пропорции»


На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра. Форму додекаэдра, по мнению древних, имела ВСЕЛЕННАЯ, т.е. они считали, что мы живём внутри свода, имеющего форму поверхности правильного додекаэдра.






Египетские пирамиды Среди египетских пирамид особое место занимает пирамида фараона Хеопса. Длина стороны её основания L =233,16 м; высота Н =146,6; 148,2 м. Первоначально высота оценивалась не точно. Это связано с осадкой швов, деформацией блоков, предполагаемой частичной разборкой вершины от S 66 до 1010 м. Среди египетских пирамид особое место занимает пирамида фараона Хеопса. Длина стороны её основания L =233,16 м; высота Н =146,6; 148,2 м. Первоначально высота оценивалась не точно. Это связано с осадкой швов, деформацией блоков, предполагаемой частичной разборкой вершины от S 66 до 1010 м.


Угол наклона граней =5151. Впервые он был измерен английским полковником Г. Вайзовым в 1837 г tg =1,27306= vd= 1, Угол наклона граней =5151. Впервые он был измерен английским полковником Г. Вайзовым в 1837 г tg =1,27306= vd= 1,27202.


Царская гробница Великая пирамида была построена как гробница Хуфу, известного грекам как Хеопс. Он был одним из фараонов, или царей древнего Египта, а его гробница была завершена в 2580 году до н.э. Позднее в Гизе было построено еще две пирамиды, для сына и внука Хуфу, а также меньшие по размерам пирамиды для их цариц. Пирамида Хуфу, самая дальняя на рисунке, является самой большой. Пирамида его сына находится в середине и смотрится выше, потому что стоит на более высоком месте.


В III веке до н.э. был построен маяк, чтобы корабли могли благополучно миновать рифы на пути в александрийскую бухту. Ночью им помогало в этом отражение языков пламени, а днем - столб дыма. Это был первый в мире маяк, и простоял он 1500 лет Фаросский маяк состоял из трех мраморных башен, стоявших на основании из массивных каменных блоков. Первая башня была прямоугольной, в ней находились комнаты, в которых жили рабочие и солдаты. Над этой башней располагалась меньшая, восьмиугольная башня со спиральным пандусом, ведущим в верхнюю башню. Верхняя башня формой напоминала цилиндр, в котором горел огонь, помогавший кораблям благополучно достигнуть бухты. На вершине башни стояла статуя Зевса Спасителя. Общая высота маяка составляла 117 метров. Александрийский маяк



Простейшее животное Скелет одноклеточного организма феодарии (Circogonia icosahedra) по форме напоминает икосаэдр. Скелет одноклеточного организма феодарии (Circogonia icosahedra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Он больше похоже на звёздчатый многогранник. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Он больше похоже на звёздчатый многогранник. Из всех многогранников с тем же числом граней икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление толщи воды.




Интересно Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр.


«Полуправильные многогранники» - Пирамида. Правильные многогранники еще называют Платоновыми телами. Курносый додекаэдр. Тетраэдр. Икосаэдр. Куб. Правильные. Ромбоикосододэкаэдр. Перейти к следующему вопросу. Вспомним. Обучающая программа. Управляющие кнопки. Вы дали неверный ответ. Курносый куб. К какому из типов многогранников относится следующая формула V=a*b*c:

«Правильные многогранники в жизни» - История. Кусудама – бумажный цветочный шар. Евклид. Здание без углов. Примеры. Цели. Иоганн Кеплер. Достопримечательность Белоруссии. Правильные многогранники. Необычные построения. Новое чудо света. Многогранники в искусстве. Многогранники и кристаллы. Применение правильных многогранников в архитектуре.

«Виды правильных многогранников» - Механические головоломки. Египетские Пирамиды. Правильные многогранники и природа. Ученые, внесшие вклад в изучение правильных многогранников. Александрийский Маяк. Площадь икосаэдра. Основные формулы. Пифагор. Галикарнасский мавзолей. Многогранники в природе. Гексаэдр. Октаэдр. Площадь поверхности додекаэдра.

«Применение правильных многогранников» - Многогранники в искусстве. Использование в жизни. Многогранники в природе. Кеплер. Мир правильных многогранников. Группа «Историки». Евклид. Многогранники в математике. Архимед. Теорема Эйлера. История возникновения правильных многогранников. Заключение. Многогранники в архитектуре. Взаимосвязь «золотого сечения» и происхождения многогранников.

«Правильные многогранники в геометрии» - В кристаллографии существует раздел, который называется «геометрическая кристаллография». Лучи кристалла обуславливают икосаэдро-додекаэрическую структуру Земли, Гипотеза В.Макарова и В.Морозова: Тетраэдр-огонь. В местах пересечения рёбер располагаются очаги древних культур и цивилизаций, Многогранники вокруг нас.

«Симметрия правильных многогранников» - Правильный додекаэдр. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Симметрия в искусстве. Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии. Церковь Покрова Богородицы на Нерли. составлен из шести квадратов. Следовательно, сумма плоских углов при каждой вершине равна 240°.

Всего в теме 15 презентаций

Поделиться: