Как производят ядерное топливо (9 фото). Особенности ядерного топлива и его использование в атомной энергетике Основной вид топлива для аэс

Жизненный цикл ядерного топлива на основе урана или плутония начинается на добывающих предприятиях, химических комбинатах, в газовых центрифугах, и не заканчивается в момент выгрузки тепловыделяющей сборки из реактора, поскольку каждой ТВС предстоит пройти долгий путь утилизации, а затем и переработки.

Добыча сырья для ядерного топлива

Уран - самый тяжёлый металл на земле. Около 99,4% земного урана приходится на уран-238, и всего 0,6% - на уран-235. В докладе Международного агентства по атомной энергии под названием «Красная книга» содержатся данные о росте объёмов добычи и спроса на уран, несмотря на аварию на АЭС «Фукусима-1», которая заставила многих задуматься о перспективах ядерной энергетики. Только за последние несколько лет разведанные запасы урана выросли на 7%, что связано с открытием новых месторождений. Самыми крупными производителями остаются Казахстан, Канада и Австралия, они добывают до 63% мирового урана. Кроме этого запасы металла имеются в Австралии, Бразилии, Китае, Малави, России, Нигере, США, Украине, КНР и других странах. Ранее Пронедра писали, что за 2016 год в РФ было добыто 7,9 тысячи тонн урана.

В наши дни уран добывают тремя разными способами. Не теряет своей актуальности открытый метод. Он используется в тех случаях, когда залежи находятся близко к поверхности земли. При открытом способе бульдозеры создают карьер, затем руда с примесями грузится в самосвалы для транспортировки на перерабатывающие комплексы.

Часто рудное тело залегает на большой глубине, в таком случае используется подземный способ добычи. Вырывается шахта глубиной до двух километров, породу, путём сверления, добывают в горизонтальных штреках, перевозят наверх в грузовых лифтах.

Смесь, которая таким образом вывозится наверх, имеет множество составляющих. Породу необходимо измельчить, разбавить водой и удалить лишнее. Далее в смесь добавляют серную кислоту для проведения процесса выщелачивания. В ходе этой реакции химики получают осадок солей урана жёлтого цвета. Наконец, уран с примесями очищается на аффинажном производстве. Только после этого получается закись-окись урана, которой и торгуют на бирже.

Есть гораздо более безопасный, экологически чистый и экономически выгодный способ, который называют скважинным подземным выщелачиванием (СПВ).

При этом методе разработки месторождений территория остаётся безопасной для персонала, а радиационный фон соответствует фону в крупных городах. Чтобы добыть уран с помощью выщелачивания, необходимо пробурить 6 скважин по углам шестиугольника. Через эти скважины в залежи урана закачивают серную кислоту, она смешивается с его солями. Этот раствор добывают, а именно выкачивают через скважину в центре шестиугольника. Чтобы добиться нужной концентрации солей урана, смесь по нескольку раз пропускают через сорбционные колонны.

Производство ядерного топлива

Производство ядерного топлива невозможно представить без газовых центрифуг, которые используются для получения обогащённого урана. После достижения необходимой концентрации из диоксида урана прессуют так называемые таблетки. Их создают при помощи смазочных материалов, которые удаляются во время обжига в печах. Температура обжига достигает 1000 градусов. После этого таблетки проверяются на соответствие заявленным требованиям. Имеют значение качество поверхности, содержание влаги, соотношение кислорода и урана.

В это же время в другом цехе готовят трубчатые оболочки для тепловыделяющих элементов. Вышеназванные процессы, включая последующие дозировку и упаковку таблеток в оболочечные трубки, герметизацию, дезактивацию, называются фабрикацией топлива. В России созданием тепловыделяющих сборок (ТВС) занимаются предприятия «Машиностроительный завод» в Московской области, «Новосибирский завод химконцентратов» в Новосибирске, «Московский завод полиметаллов» и другие.

Каждая партия топливных сборок создаётся под реактор конкретного типа. Европейские ТВС делаются в форме квадрата, а российские - с шестиугольным сечением. В РФ широко распространены реакторы типа ВВЭР-440 и ВВЭР-1000. Первые ТВЭЛы для ВВЭР-440 начали разрабатываться с 1963 года, а для ВВЭР-1000 - с 1978 года. Несмотря на то что в России активно внедряются новые реакторы с постфукусимскими технологиями безопасности, по стране и за её пределами функционирует много ядерных установок старого образца, поэтому одинаково актуальными остаются топливные сборки для разных типов реакторов.

Например, для обеспечения тепловыделяющими сборками одной активной зоны реактора РБМК-1000 необходимо свыше 200 тысяч комплектующих деталей из циркониевых сплавов, а также 14 млн спечённых таблеток из диоксида урана. Иногда стоимость изготовления топливной сборки может превосходить стоимость содержащегося в элементах топлива, поэтому так важно обеспечить высокую энергоотдачу с каждого килограмма урана.

Затраты на производственные процессы в %

Отдельно стоит сказать о топливных сборках для исследовательских реакторов. Они конструируются таким образом, чтобы сделать наблюдение и изучение процесса генерации нейтронов максимально комфортным. Такие ТВЭЛы для экспериментов в сферах ядерной физики, наработки изотопов, радиационной медицины в России производит «Новосибирский завод химических концентратов». ТВС создаются на основе бесшовных элементов с ураном и алюминием.

Производством ядерного топлива в РФ занимается топливная компания ТВЭЛ (подразделение «Росатома»). Предприятие работает над обогащением сырья, сборкой тепловыделяющих элементов, а также предоставляет услуги по лицензированию топлива. «Ковровский механический завод» во Владимирской области и «Уральский завод газовых центрифуг» в Свердловской области создают оборудование для российских ТВС.

Особенности транспортировки ТВЭЛов

Природный уран характеризуются низким уровнем радиоактивности, однако перед производством ТВС металл проходит процедуру обогащения. Содержание урана-235 в природной руде не превышает 0,7%, а радиоактивность составляет 25 беккерелей на 1 миллиграмм урана.

В урановых таблетках, которые помещаются в ТВС, находится уран с концентрацией урана-235 5%. Готовые ТВС с ядерным топливом перевозятся в специальных металлических контейнерах высокой прочности. Для транспортировки используется железнодорожный, автомобильный, морской и даже воздушный транспорт. В каждом контейнере размещают по две сборки. Перевозка не облучённого (свежего) топлива не представляет радиационной опасности, поскольку излучение не выходит за пределы циркониевых трубок, в которые помещаются прессованные таблетки из урана.

Для партии топлива разрабатывается специальный маршрут, груз перевозится в сопровождении охранного персонала производителя или заказчика (чаще), что связано прежде всего с дороговизной оборудования. За всю историю производства ядерного топлива не было зафиксировано ни одной транспортной аварии с участием ТВС, которая бы повлияла на радиационный фон окружающей среды или привела к жертвам.

Топливо в активной зоне реактора

Единица ядерного топлива - ТВЭЛ - способна выделять на протяжении долгого времени огромное количество энергии. С такими объёмами не сравнится ни уголь, ни газ. Жизненный цикл топлива на любой АЭС начинается с выгрузки, выемки и хранения на складе ТВС свежего топлива. Когда предыдущая партия топлива в реакторе выгорает, персонал комплектует ТВС для загрузки в активную зону (рабочую зону реактора, где происходит реакция распада). Как правило, топливо перезагружается частично.

Полностью топливо закладывается в активную зону только в момент первого запуска реактора. Это связано с тем, что ТВЭЛы в реакторе выгорают неравномерно, поскольку нейтронный поток различается по интенсивности в разных зонах реактора. Благодаря учётным приборам, персонал станции имеет возможность в режиме реального времени следить за степенью выгорания каждой единицы топлива и производить замену. Иногда вместо загрузки новых ТВС, сборки перемещаются между собой. В центре активной зоны выгорание происходит интенсивнее всего.

ТВС после атомной станции

Уран, который отработал в ядерном реакторе, называется облучённым или выгоревшим. А такие ТВС - отработавшим ядерным топливом. ОЯТ позиционируется отдельно от радиоактивных отходов, поскольку имеет как минимум 2 полезных компонента - это невыгоревший уран (глубина выгорания металла никогда не достигает 100%) и трансурановые радионуклиды.

В последнее время физики стали использовать в промышленности и медицине радиоактивные изотопы, накапливающиеся в ОЯТ. После того как топливо отработает свою кампанию (время нахождения сборки в активной зоне реактора в условиях работы на номинальной мощности), его отправляют в бассейн выдержки, затем в хранилище непосредственно в реакторном отделении, а после этого - на переработку или захоронение. Бассейн выдержки предназначен для отвода тепла и защиты от ионизирующего излучения, поскольку ТВС после извлечения из реактора остаётся опасной.

В США, Канаде или Швеции ОЯТ не отправляют на повторную переработку. Другие страны, среди них и Россия, работают над замкнутым топливным циклом. Он позволяет существенно сократить расходы на производство ядерного топлива, поскольку повторно используется часть ОЯТ.

Топливные стержни растворяются в кислоте, после чего исследователи выделяют из отходов плутоний и неиспользованный уран. Около 3% сырья эксплуатировать повторно невозможно, это высокоактивные отходы, которые проходят процедуры битумирования или остекловывания.

Из отработавшего ядерного топлива можно получить 1% плутония. Этот металл не требуется обогащать, Россия использует его в процессе производства инновационного MOX-топлива. Замкнутый топливный цикл позволяет сделать одну ТВС дешевле приблизительно на 3%, однако такая технология требует больших инвестиций на строительство промышленных узлов, поэтому пока не получила широкого распространения в мире. Тем не менее, топливная компания «Росатома» не прекращает исследования в этом направлении. Недавно Пронедра писали, что в Российской Федерации работают над топливом, способным в активной зоне реактора утилизировать изотопы америция, кюрия и нептуния, которые входят в те самые 3% высокорадиоактивных отходов.

Производители ядерного топлива: рейтинг

  1. Французская компания Areva до недавнего времени обеспечивала 31% мирового рынка тепловыделяющих сборок. Фирма занимается производством ядерного топлива и сборкой комплектующих для АЭС. В 2017 году Areva пережила качественное обновление, в компанию пришли новые инвесторы, а колоссальный убыток 2015 года удалось сократить в 3 раза.
  2. Westinghouse - американское подразделение японской компании Toshiba. Активно развивает рынок в восточной Европе, поставляет тепловыделяющие сборки на украинские АЭС. Вместе с Toshiba обеспечивает 26% мирового рынка производства ядерного топлива.
  3. Топливная компания ТВЭЛ госкорпорации «Росатом» (Россия) расположилась на третьем месте. ТВЭЛ обеспечивает 17% мирового рынка, имеет десятилетний портфель контрактов на 30 млрд долларов и поставляет топливо на более чем 70 реакторов. ТВЭЛ разрабатывает ТВС для реакторов ВВЭР, а также выходит на рынок ядерных установок западного дизайна.
  4. Japan Nuclear Fuel Limited , по последним данным, обеспечивает 16% мирового рынка, поставляет ТВС на большую часть ядерных реакторов в самой Японии.
  5. Mitsubishi Heavy Industries - японский гигант, который производит турбины, танкеры, кондиционеры, а с недавних пор и ядерное топливо для реакторов западного образца. Mitsubishi Heavy Industries (подразделение головной компании) занимается строительством ядерных реакторов APWR, исследовательской деятельностью вместе с Areva. Именно эта компания выбрана японским правительством для разработки новых реакторов.

Жизненный цикл ядерного топлива на основе урана или плутония начинается на добывающих предприятиях, химических комбинатах, в газовых центрифугах, и не заканчивается в момент выгрузки тепловыделяющей сборки из реактора, поскольку каждой ТВС предстоит пройти долгий путь утилизации, а затем и переработки.

Добыча сырья для ядерного топлива

Уран - самый тяжёлый металл на земле. Около 99,4% земного урана приходится на уран-238, и всего 0,6% - на уран-235. В докладе Международного агентства по атомной энергии под названием «Красная книга» содержатся данные о росте объёмов добычи и спроса на уран, несмотря на аварию на АЭС «Фукусима-1», которая заставила многих задуматься о перспективах ядерной энергетики. Только за последние несколько лет разведанные запасы урана выросли на 7%, что связано с открытием новых месторождений. Самыми крупными производителями остаются Казахстан, Канада и Австралия, они добывают до 63% мирового урана. Кроме этого запасы металла имеются в Австралии, Бразилии, Китае, Малави, России, Нигере, США, Украине, КНР и других странах. Ранее Пронедра писали, что за 2016 год в РФ было добыто 7,9 тысячи тонн урана.

В наши дни уран добывают тремя разными способами. Не теряет своей актуальности открытый метод. Он используется в тех случаях, когда залежи находятся близко к поверхности земли. При открытом способе бульдозеры создают карьер, затем руда с примесями грузится в самосвалы для транспортировки на перерабатывающие комплексы.

Часто рудное тело залегает на большой глубине, в таком случае используется подземный способ добычи. Вырывается шахта глубиной до двух километров, породу, путём сверления, добывают в горизонтальных штреках, перевозят наверх в грузовых лифтах.

Смесь, которая таким образом вывозится наверх, имеет множество составляющих. Породу необходимо измельчить, разбавить водой и удалить лишнее. Далее в смесь добавляют серную кислоту для проведения процесса выщелачивания. В ходе этой реакции химики получают осадок солей урана жёлтого цвета. Наконец, уран с примесями очищается на аффинажном производстве. Только после этого получается закись-окись урана, которой и торгуют на бирже.

Есть гораздо более безопасный, экологически чистый и экономически выгодный способ, который называют скважинным подземным выщелачиванием (СПВ).

При этом методе разработки месторождений территория остаётся безопасной для персонала, а радиационный фон соответствует фону в крупных городах. Чтобы добыть уран с помощью выщелачивания, необходимо пробурить 6 скважин по углам шестиугольника. Через эти скважины в залежи урана закачивают серную кислоту, она смешивается с его солями. Этот раствор добывают, а именно выкачивают через скважину в центре шестиугольника. Чтобы добиться нужной концентрации солей урана, смесь по нескольку раз пропускают через сорбционные колонны.

Производство ядерного топлива

Производство ядерного топлива невозможно представить без газовых центрифуг, которые используются для получения обогащённого урана. После достижения необходимой концентрации из диоксида урана прессуют так называемые таблетки. Их создают при помощи смазочных материалов, которые удаляются во время обжига в печах. Температура обжига достигает 1000 градусов. После этого таблетки проверяются на соответствие заявленным требованиям. Имеют значение качество поверхности, содержание влаги, соотношение кислорода и урана.

В это же время в другом цехе готовят трубчатые оболочки для тепловыделяющих элементов. Вышеназванные процессы, включая последующие дозировку и упаковку таблеток в оболочечные трубки, герметизацию, дезактивацию, называются фабрикацией топлива. В России созданием тепловыделяющих сборок (ТВС) занимаются предприятия «Машиностроительный завод» в Московской области, «Новосибирский завод химконцентратов» в Новосибирске, «Московский завод полиметаллов» и другие.

Каждая партия топливных сборок создаётся под реактор конкретного типа. Европейские ТВС делаются в форме квадрата, а российские - с шестиугольным сечением. В РФ широко распространены реакторы типа ВВЭР-440 и ВВЭР-1000. Первые ТВЭЛы для ВВЭР-440 начали разрабатываться с 1963 года, а для ВВЭР-1000 - с 1978 года. Несмотря на то что в России активно внедряются новые реакторы с постфукусимскими технологиями безопасности, по стране и за её пределами функционирует много ядерных установок старого образца, поэтому одинаково актуальными остаются топливные сборки для разных типов реакторов.

Например, для обеспечения тепловыделяющими сборками одной активной зоны реактора РБМК-1000 необходимо свыше 200 тысяч комплектующих деталей из циркониевых сплавов, а также 14 млн спечённых таблеток из диоксида урана. Иногда стоимость изготовления топливной сборки может превосходить стоимость содержащегося в элементах топлива, поэтому так важно обеспечить высокую энергоотдачу с каждого килограмма урана.

Затраты на производственные процессы в %

Отдельно стоит сказать о топливных сборках для исследовательских реакторов. Они конструируются таким образом, чтобы сделать наблюдение и изучение процесса генерации нейтронов максимально комфортным. Такие ТВЭЛы для экспериментов в сферах ядерной физики, наработки изотопов, радиационной медицины в России производит «Новосибирский завод химических концентратов». ТВС создаются на основе бесшовных элементов с ураном и алюминием.

Производством ядерного топлива в РФ занимается топливная компания ТВЭЛ (подразделение «Росатома»). Предприятие работает над обогащением сырья, сборкой тепловыделяющих элементов, а также предоставляет услуги по лицензированию топлива. «Ковровский механический завод» во Владимирской области и «Уральский завод газовых центрифуг» в Свердловской области создают оборудование для российских ТВС.

Особенности транспортировки ТВЭЛов

Природный уран характеризуются низким уровнем радиоактивности, однако перед производством ТВС металл проходит процедуру обогащения. Содержание урана-235 в природной руде не превышает 0,7%, а радиоактивность составляет 25 беккерелей на 1 миллиграмм урана.

В урановых таблетках, которые помещаются в ТВС, находится уран с концентрацией урана-235 5%. Готовые ТВС с ядерным топливом перевозятся в специальных металлических контейнерах высокой прочности. Для транспортировки используется железнодорожный, автомобильный, морской и даже воздушный транспорт. В каждом контейнере размещают по две сборки. Перевозка не облучённого (свежего) топлива не представляет радиационной опасности, поскольку излучение не выходит за пределы циркониевых трубок, в которые помещаются прессованные таблетки из урана.

Для партии топлива разрабатывается специальный маршрут, груз перевозится в сопровождении охранного персонала производителя или заказчика (чаще), что связано прежде всего с дороговизной оборудования. За всю историю производства ядерного топлива не было зафиксировано ни одной транспортной аварии с участием ТВС, которая бы повлияла на радиационный фон окружающей среды или привела к жертвам.

Топливо в активной зоне реактора

Единица ядерного топлива - ТВЭЛ - способна выделять на протяжении долгого времени огромное количество энергии. С такими объёмами не сравнится ни уголь, ни газ. Жизненный цикл топлива на любой АЭС начинается с выгрузки, выемки и хранения на складе ТВС свежего топлива. Когда предыдущая партия топлива в реакторе выгорает, персонал комплектует ТВС для загрузки в активную зону (рабочую зону реактора, где происходит реакция распада). Как правило, топливо перезагружается частично.

Полностью топливо закладывается в активную зону только в момент первого запуска реактора. Это связано с тем, что ТВЭЛы в реакторе выгорают неравномерно, поскольку нейтронный поток различается по интенсивности в разных зонах реактора. Благодаря учётным приборам, персонал станции имеет возможность в режиме реального времени следить за степенью выгорания каждой единицы топлива и производить замену. Иногда вместо загрузки новых ТВС, сборки перемещаются между собой. В центре активной зоны выгорание происходит интенсивнее всего.

ТВС после атомной станции

Уран, который отработал в ядерном реакторе, называется облучённым или выгоревшим. А такие ТВС - отработавшим ядерным топливом. ОЯТ позиционируется отдельно от радиоактивных отходов, поскольку имеет как минимум 2 полезных компонента - это невыгоревший уран (глубина выгорания металла никогда не достигает 100%) и трансурановые радионуклиды.

В последнее время физики стали использовать в промышленности и медицине радиоактивные изотопы, накапливающиеся в ОЯТ. После того как топливо отработает свою кампанию (время нахождения сборки в активной зоне реактора в условиях работы на номинальной мощности), его отправляют в бассейн выдержки, затем в хранилище непосредственно в реакторном отделении, а после этого - на переработку или захоронение. Бассейн выдержки предназначен для отвода тепла и защиты от ионизирующего излучения, поскольку ТВС после извлечения из реактора остаётся опасной.

В США, Канаде или Швеции ОЯТ не отправляют на повторную переработку. Другие страны, среди них и Россия, работают над замкнутым топливным циклом. Он позволяет существенно сократить расходы на производство ядерного топлива, поскольку повторно используется часть ОЯТ.

Топливные стержни растворяются в кислоте, после чего исследователи выделяют из отходов плутоний и неиспользованный уран. Около 3% сырья эксплуатировать повторно невозможно, это высокоактивные отходы, которые проходят процедуры битумирования или остекловывания.

Из отработавшего ядерного топлива можно получить 1% плутония. Этот металл не требуется обогащать, Россия использует его в процессе производства инновационного MOX-топлива. Замкнутый топливный цикл позволяет сделать одну ТВС дешевле приблизительно на 3%, однако такая технология требует больших инвестиций на строительство промышленных узлов, поэтому пока не получила широкого распространения в мире. Тем не менее, топливная компания «Росатома» не прекращает исследования в этом направлении. Недавно Пронедра писали, что в Российской Федерации работают над топливом, способным в активной зоне реактора утилизировать изотопы америция, кюрия и нептуния, которые входят в те самые 3% высокорадиоактивных отходов.

Производители ядерного топлива: рейтинг

  1. Французская компания Areva до недавнего времени обеспечивала 31% мирового рынка тепловыделяющих сборок. Фирма занимается производством ядерного топлива и сборкой комплектующих для АЭС. В 2017 году Areva пережила качественное обновление, в компанию пришли новые инвесторы, а колоссальный убыток 2015 года удалось сократить в 3 раза.
  2. Westinghouse - американское подразделение японской компании Toshiba. Активно развивает рынок в восточной Европе, поставляет тепловыделяющие сборки на украинские АЭС. Вместе с Toshiba обеспечивает 26% мирового рынка производства ядерного топлива.
  3. Топливная компания ТВЭЛ госкорпорации «Росатом» (Россия) расположилась на третьем месте. ТВЭЛ обеспечивает 17% мирового рынка, имеет десятилетний портфель контрактов на 30 млрд долларов и поставляет топливо на более чем 70 реакторов. ТВЭЛ разрабатывает ТВС для реакторов ВВЭР, а также выходит на рынок ядерных установок западного дизайна.
  4. Japan Nuclear Fuel Limited , по последним данным, обеспечивает 16% мирового рынка, поставляет ТВС на большую часть ядерных реакторов в самой Японии.
  5. Mitsubishi Heavy Industries - японский гигант, который производит турбины, танкеры, кондиционеры, а с недавних пор и ядерное топливо для реакторов западного образца. Mitsubishi Heavy Industries (подразделение головной компании) занимается строительством ядерных реакторов APWR, исследовательской деятельностью вместе с Areva. Именно эта компания выбрана японским правительством для разработки новых реакторов.

Атомная электроэнергетика – современный и быстро развивающийся способ добычи электричества. А вы знаете, как устроены атомные станции? Каков принцип работы АЭС? Какие типы ядерных реакторов сегодня существуют? Постараемся детально рассмотреть схему работы АЭС, вникнуть в устройство ядерного реактора и узнать о том, насколько безопасен атомный способ добычи электроэнергии.

Как устроена АЭС?

Любая станция – это закрытая зона вдалеке от жилого массива. На ее территории находятся несколько зданий. Самое главное сооружение – здание реактора, рядом с ним расположен машинный зал, из которого реактором управляют, и здание безопасности.

Схема невозможна без ядерного реактора. Атомный (ядерный) реактор – это устройство АЭС, которое призвано организовать цепную реакцию деления нейтронов с обязательным выделением энергии при этом процессе. Но каков принцип работы АЭС?

Вся реакторная установка помещается в здание реактора, большую бетонную башню, которая скрывает реактор и в случае аварии удержит в себе все продукты ядерной реакции. Эту большую башню называют контейнтмент, герметичная оболочка или гермозона.

Гермозона в новых реакторах имеет 2 толстые бетонные стенки – оболочки.
Внешняя оболочка толщиной в 80 см обеспечивает защиту гермозоны от внешних воздействий.

Внутренняя оболочка толщиной в 1 метр 20 см имеет в своем устройстве специальные стальные тросы, которые увеличивают прочность бетона почти в три раза и не дадут конструкции рассыпаться. С внутренней стороны она выложена тонким листом специальной стали, которая призвана служить дополнительной защитой контейнтмента и в случае аварии не выпустить содержимое реактора за пределы гермозоны.

Такое устройство атомной станции позволяет выдержать падение самолета весом до 200 тонн, 8 бальное землетрясение, торнадо и цунами.

Впервые герметичная оболочка была сооружена на американской АЭС Коннектикут Янки в 1968 году.

Полная высота гермозоны – 50-60 метров.

Из чего состоит атомный реактор?

Чтобы понять принцип работы ядерного реактора, а значит и принцип работы АЭС, нужно разобраться в составляющих реактора.

  • Активная зона. Это зона, куда помещается ядерное топливо (тепловыделитель) и замедлитель. Атомы топлива (чаще всего топливом выступает уран) совершают цепную реакцию деления. Замедлитель призван контролировать процесс деления, и позволяет провести нужную по скорости и силе реакцию.
  • Отражатель нейтронов. Отражатель окружает активную зону. Состоит он из того же материала, что и замедлитель. По сути это короб, главное назначение которого – не дать нейтронам выйти из активной зоны и попасть в окружающую среду.
  • Теплоноситель. Теплоноситель должен вобрать в себя тепло, которое выделилось при делении атомов топлива, и передать его другим веществам. Теплоноситель во многом определяет то, как устроена АЭС. Самый популярный теплоноситель на сегодня – вода.
    Система управления реактором. Датчики и механизмы, которые приводят реактор АЭС в действие.

Топливо для АЭС

На чем работает АЭС? Топливо для АЭС – это химические элементы, обладающие радиоактивными свойствами. На всех атомных станциях таким элементом выступает уран.

Устройство станций подразумевает, что АЭС работают на сложном составном топливе, а не на чистом химическом элементе. И чтобы из природного урана добыть урановое топливо, которое загружается в ядерный реактор, нужно провести множество манипуляций.

Обогащенный уран

Уран состоит из двух изотопов, то есть в его составе есть ядра с разной массой. Назвали их по количеству протонов и нейтронов изотоп -235 и изотоп-238. Исследователи 20 века начали добывать из руды 235й уран, т.к. его легче было разлагать и преобразовывать. Выяснилось, что такого урана в природе всего 0,7 % (остальные проценты достались 238му изотопу).

Что делать в этом случае? Уран решили обогащать. Обогащение урана это процесс, когда в нем остается много нужных 235х изотопов и мало ненужных 238х. Задача обогатителей урана – из 0.7% сделать почти 100% урана-235.

Обогатить уран можно с помощью двух технологий – газодиффузионной или газоцентрифужной. Для их использования уран, добытый из руды, переводят в газообразное состояние. В виде газа его и обогащают.

Урановый порошок

Обогащенный урановый газ переводят в твердое состояние – диоксид урана. Такой чистый твердый 235й уран выглядит как большие белые кристаллы, которые позже дробят в урановый порошок.

Урановые таблетки

Урановые таблетки – это твердые металлические шайбы, длиной в пару сантиметров. Чтобы из уранового порошка слепить такие таблетки, его перемешивают с веществом – пластификатором, он улучшает качество прессования таблеток.

Прессованные шайбы запекают при температуре 1200 градусов по Цельсию более суток, чтобы придать таблеткам особую прочность и устойчивость к высоким температурам. То, как работает АЭС, напрямую зависит от того, насколько хорошо спрессовали и запекли урановое топливо.

Запекают таблетки в молибденовых ящиках, т.к. только этот металл способен не расплавиться при «адских» температурах свыше полутора тысяч градусов. После этого урановое топливо для АЭС считается готовым.

Что такое ТВЭЛ и ТВС?

Активная зона реактора внешне выглядит как огромный диск или труба с дырками в стенках (в зависимости от типа реактора), раз в 5 больше человеческого тела. В этих дырках находится урановое топливо, атомы которого и проводят нужную реакцию.

Просто так закинуть топливо в реактор невозможно, ну, если вы не хотите получить взрыв всей станции и аварию с последствиями на пару близлежащих государств. Поэтому урановое топливо помещается в ТВЭЛы, а потом собирается в ТВС. Что значат эти аббревиатуры?

  • ТВЭЛ – тепловыделяющий элемент (не путать с одноименным названием российской компании, которая их производит). По сути это тонкая и длинная циркониевая трубка, сделанная из сплавов циркония, в которую помещаются урановые таблетки. Именно в ТВЭЛах атомы урана начинают взаимодействовать друг с другом, выделяя тепло при реакции.

Цирконий выбран материалом для производства ТВЭЛов благодаря его тугоплавкости и антикоррозийности.

Тип ТВЭЛов зависит от типа и строения реактора. Как правило, строение и назначение ТВЭЛов не меняется, разными могут быть длина и ширина трубки.

В одну циркониевую трубку автомат загружает более 200 урановых таблеток. Всего в реакторе одновременно работают около 10 миллионов урановых таблеток.
ТВС – тепловыделяющая сборка. Работники АЭС называют ТВС пучками.

По сути это несколько ТВЭЛов, скрепленных между собой. ТВС – это готовое атомное топливо, то, на чем работает АЭС. Именно ТВС загружаются в ядерный реактор. В один реактор помещаются около 150 – 400 ТВС.
В зависимости от того, в каком реакторе ТВС будет работать, они бывают разной формы. Иногда пучки складываются в кубическую, иногда в цилиндрическую, иногда в шестиугольную форму.

Одна ТВС за 4 года эксплуатации вырабатывает столько же энергии как при сжигании 670 вагонов угля, 730 цистерн с природным газом или 900 цистерн, груженных нефтью.
Сегодня ТВС производят в основном на заводах России, Франции, США и Японии.

Чтобы доставить топливо для АЭС в другие страны, ТВС запечатывают в длинные и широкие металлические трубы, из труб выкачивают воздух и специальными машинами доставляют на борта грузовых самолетов.

Весит ядерное топливо для АЭС запредельно много, т.к. уран – один из самых тяжелых металлов на планете. Его удельный вес в 2,5 раза больше, чем у стали.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так:
После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов:
Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство.
Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.


С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

Несколько фактов об атомных реакторах…

Интересно, что один реактор АЭС строят не менее 3х лет!
Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.

Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.

Водо-водяной реактор

Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор.
Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.

Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.

Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.

Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.

Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности.
Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

  • Первый барьер – прочность урановых таблеток. Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления. Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
  • Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
  • Третий барьер – прочный стальной корпус реактор а, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
  • Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

Выборка из книги: "Атомная энергетика. Спрашивали? Отвечаем!"

Акатов А. А., Коряковский Ю. С. 2012 г.

"Зачем России нужна ядерная отрасль?

Исторически основной причиной зарождения ядерной отрасли в нашей стране было создание ядерного оружия. Была ли в этом существенная необходимость? В 1945 году, сбросив ядерные боезаряды на Хиросиму и Нагасаки, Соединенные Штаты ясно дали понять, кто «главный» на мировой арене. Города СССР вполне могли разделить участь японских, хотя сейчас это может и показаться преувеличением. В кратчайшие сроки наши ученые смог-ли создать собственное ядерное оружие и восстановить равновесие сил, но практически параллельно с ядерной оборонной сферой начала развиваться ядерная энергетика, стали строиться АЭС, предназначенные для выработки электричества за счет цепной реакции деления. Постепенно «мирный» атом вытеснил «военный», и в настоящий момент у нашей страны нет необходимости нарабатывать ядерные заряды для оружия. Поэтому сейчас важнейшей задачей отрасли является обеспечение российских потребителей электроэнергией в условиях растущего энергетического дефицита.

Когда дала промышленный ток первая в истории человечества АЭС?

В области мирного использования атомной энергии мы опередили американцев: первая атомная электростанция дала промышленный ток 27 июня 1954 года. Это событие про-изошло недалеко от Москвы - в городе Обнинск, на территории Физико-энергетического института им. А.И. Лейпунского. Первая АЭС, «старушка», как ее стали называть в последние годы эксплуатации, благополучно проработала 48 лет, и была остановлена относительно не-давно, в 2002 году. Физико-энергетический институт существует по сей день, являясь одним из крупнейших научных центров нашей страны.

Ядерное топливо - это просто уран?

Конечно, нет. Практически во всем мире используется ядерное топливо на основе урана, обогащенного по так называемому делящемуся изотопу - урану-235. Содержание урана-235 в уране, из которого изготавливают топливо, составляет 3-5 %, а остальные 95-97 % приходятся на неделящийся уран-238. Но в реакторы не загружают металлический уран, его переводят в форму диоксида (UO2), из которого штампуют таблетки. Таблетки помещают в металлические трубки, которые называют тепловыделяющими элементами, или твэлами. Твэлы соединяют в тепловыделяющие сборки (ТВС). Тепловыделяющие сборки и являются теми модулями, которые загружают в реактор или выгружают из него при замене топлива.

Что такое «ядерный топливный цикл»?

В данном случае речь идет не о математическом или физическом понятии цикла. В промышленности циклом принято называть группу предприятий, тесно связанных друг с другом. Например, так: продукт, выпускаемый одним из предприятий, является сырьем для другого. В ядерной отрасли сформировалась группа производств, которая решает за-дачи, связанные с изготовлением и применением ядерного топлива. Работа предприятий ядерного топливного цикла организована следующим образом. Сначала урановую руду извлекают из недр, очищают уран от ненужных примесей, обогащают его по нужному изотопу (урану-235) и переводят в форму, подходящую для «сжигания» в ядерном реакторе - в форму ядерного топлива. Несколько лет топливо «работает» в реакторе, благодаря чему на атомной электростанции вырабатывается электроэнергия, атомные ледоколы и подводные лодки ходят по морям и океанам, а ученые делают новые открытия. После пребывания в ре-акторе топливо (теперь его называют отработавшим ядерным топливом) обладает высокой радиоактивностью и содержит ценные компоненты, которые образовались в ходе ядерной реакции. Его необходимо безопасно переработать, выделить ценные материалы, а образовавшиеся радиоактивные отходы перевести в без-опасную форму и захоронить. Эти задачи также решают предприятия, входящие в ядерный топливный цикл.В Российской Федерации соответствующие производства объединены в составе холдинга "Атомэнерго".

Зачем обогащаются люди, мы знаем. А зачем обогащается уран?

В ядерном реакторе протекает самоподдерживающаяся цепная ядерная реакция деления. Происходит это так: в ядро урана-235 попадает нейтрон, оно делится на две части и испускает 2-3 нейтрона, которые попадают в соседние ядра урана-235, они тоже делятся - и реакция поддерживает себя сама. Но если поблизости мало таких ядер, то нейтроны могут в них и не попасть - и реакция не пойдет. Таким образом, работоспособность ядерного реактора определяется концентрацией ядер урана-235 в активной зоне. В природном уране 99,3 % неделящегося урана-238 и всего лишь 0,7 % делящегося урана-235. И если загрузить в реактор топливо из природного урана, то ядерная реакция протекать не будет. Поэтому природный уран обогащают, доводят содержание урана-235 до 3–5 %. (Сам уран, конечно, обогащаться не может, нужна помощь специалистов).Ради справедливости нужно сказать, что существуют реакторы, работающие на топливе с природным содержанием урана-235. Но в них используется тяжелая вода, получение которой также требует определенных затрат.

Сколько ядерных энергоблоков в России и в мире?

В нашей стране 10 атомных станций, на которых работает 33 ядерных энергоблока. Доля электроэнергии, вырабатываемой на российских АЭС, составляет около 17 % от обще-го количества, и почти совпадает со среднемировым показателем - 15 %. Все наши АЭС, за исключением Билибинской, расположены в европейской части страны. Реакторы самых ранних АЭС периодически модернизируют, чтобы привести их в соответствие с непрерывно ужесточающимися требованиями безопасности.В июле 2012 года в мире эксплуатировалось 433 ядерных энергоблока.

На российских АЭС установлены одинаковые реакторы, или нет?

Ядерная энергетика нашей страны, в основном, представлена тремя типами реакторов:

РБМК (реактор большой мощности канальный)

ВВЭР (водо-водяной энергетический реактор)

БН (реактор на быстрых нейтронах)Реакторы типа РБМК установлены на одноконтурных АЭС с водным теплоносителем. В качестве замедлителя нейтронов в них используется графит, поэтому данные реакторы еще называют уран-графитовыми. На Билибинской АЭС работают младшие братья РБМК - реакторы ЭГП с аналогичным принципом действия.Реакторы типа ВВЭР работают на двухконтурных АЭС; и в первом, и во втором контуре циркулирует вода. Эти реакторы называют водо-водяными, поскольку вода является одно-временно и теплоносителем, и замедлителем нейтронов. На вновь строящихся блоках будут устанавливать реакторы ВВЭР следующего поколения, более мощные и безопасные.А реактор БН у нас пока только один, хотя в ближайшие годы будет запущен второй крупный реактор на быстрых нейтронах. Но за этим типом реакторов будущее, поскольку они позволяют более полно использовать запасы урана.

Как долго ядерное топливо «работает» в реакторе?

Загружаемое в реактор урановое горючее работает 3-4 года. Для годовой ра-боты крупного ядерного энергоблока требуется всего лишь несколько десятков тонн низкообогащенного урана. Для сравнения, станция на угле, вырабатывающая эквивалентное количество электроэнергии, потребляет пять железнодорожных составов угля, но не в год, а… в сутки.

Почему бы не заменить АЭС «ветряками»?

Энергия ветра слишком рассеяна, и собрать ее сложно. Имеет смысл устанавливать «ветряки» в тех регионах, где дуют устойчивые сильные ветры. Это пустыни, морские побережья, а у нас они занимают всего лишь 10 % от площади страны. И речь идет, как правило, об удаленных территориях, откуда до ближайшего потребителя электроэнергии очень далеко. Конечно, этот вид энергетики не является «запрещенным». На карте России есть местности, где действительно целесообразно устанавливать ветряные электростанции. Но решить проблему энергоснабжения в масштабах всей страны, а особенно в масштабах крупных мегаполисов, они пока не в состоянии.

Давайте остановим все АЭС!

После Чернобыльской аварии и не-давней аварии на АЭС «Фукусима-I» в Японии в обществе циркулировало мне-ние, что если заглушить реакторы на всех АЭС, это существенно снизит риски. Одна-ко люди, считающие так, забывают о важной роли АЭС в энергоснабжении крупных регионов. Например, Ленинградская АЭС производит треть электроэнергии, потребляемой в Северо-Западном федеральном округе. Чем ее заменить? Еще увеличить сжигание газа, мазута, угля? Это повлечет дополнительные экологические, экономические и транспортные риски. И еще: остановив все атомные станции, мы не снизим, а, наоборот, увеличим радиационные риски. Проблема отработавшего ядерного топлива и накопленных радиоактивных отходов никуда не исчезнет, а только разрастется, поскольку заглушенный ядерный энергоблок нельзя предоставить судьбе. Потребуется одновременно запустить не-сколько сложных и затратных программ по выводу из эксплуатации ядерных энергоблоков, включающих очистку объектов от радиоактивного загрязнения и демонтаж оборудования, являющегося мощным источником радиации. И образующиеся при этом радиоактивные от-ходы на свалку не выбросишь - вопрос, где их разместить, также потребует решения.

Сколько специалистов управляют работой энергоблока?

Если сравнивать ядерный энергоблок и человека, то сердцем можно назвать реактор, а мозгом - блочный щит управления (БЩУ). Отсюда операторы - профессионалы высокого класса - контролируют процессы, протекающие в реакторе, работу паровой турбины и энергоблока в целом. Их трое, и каждый сидит за своим пультом. Кроме того, в БЩУ находится начальник смены блока или его заместитель, но они не принимают непосредственного участия в управлении, выполняя, скорее, функцию наблюдателей с правом вмешательства, например, при обнаружении ошибки в действиях оператора. Всего 4-5 человек. Кажется, что этого недостаточно для такой ответственной задачи? Но на западных АЭС аналогичные функции выполняют всего двое сотрудников, при этом ряд задач перекладывается на автоматику.

Как быстро можно остановить ядерный реактор?

Буквально за две секунды. В конструкции любого реактора присутствуют так называемые аварийные стержни. При нормальной работе они выведены из активной зоны реактора и подвешены над ней. Когда приходит аварийный сигнал, стержни буквально падают вниз под действием собственного веса, моментально останавливая цепную реакцию в ядерном топливе. К слову сказать, на момент Чернобыльской аварии система срабатывала на порядок медленнее. Для останова реактора в 1986 году требовалось 14 секунд, что стало одной из причин, из-за которых не удалось предотвратить аварию. Из полученного урока были сделаны выводы, и проведена внушительная работа по совершенствованию аварийной защиты, чтобы избежать повторения подобной ситуации в будущем.

Правда ли, что после эксплуатации в реакторе ядерное топливо светится?

Да, это завораживающее зрелище можно наблюдать, если отработавшее топливо находится в воде. Внешне это выглядит как голубой ореол, окружающий топливные сборки, вертикально установленные под слоем темной воды на глубине нескольких метров. Кажет-ся, что топливо освещено прожекторами, но на самом деле это не так. Испускаемые ядерным топливом быстрые электроны движутся со скоростью, превышающей скорость света в воде, и излучают в синей области спектра. Подобное явление называют излучением Черенкова-Вавилова, и оно возникает даже в твердых прозрачных средах. В воздухе ядерное топливо не светится.

Много ли отходов образуется на АЭС?

Не очень: за год работы крупного энергоблока мы получаем 100-200 кубометров твердых радиоактивных отходов (ТРО) и примерно столько же жидких (ЖРО). Источники твердых отходов - загрязненные детали и материалы, отработавшее оборудование реакторного контура, загрязненная одежда, инструменты, ветошь, используемая для протирания и прочее.Источник жидких отходов - небольшие протечки радиоактивной воды, используемой в качестве теплоносителя, а также водные растворы, применяемые для отмывки радиоактивно загрязненного оборудования, сточные воды спецпрачечных и так далее. Причем первичный объем жидких отходов довольно высок - порядка 10000 кубометров в год. По-этому их упаривают, в результате чего исходное количество сокращается в десятки и даже в сотни раз.

А как обстоит дело с отходами на других предприятиях ядерного топливного цикла?

Наибольшее количество радиоактивных отходов образуется в процессе добычи урана. Они представляют собой отвалы пустой породы и отходы радиометрической сортиров-ки. Урана в них почти нет. И хотя количество таких отходов велико - более пятидесяти тысяч кубометров при обеспечении годовой работы одного реактора мощностью тысяча мегаватт - не следует забывать, что эти отходы относятся к низкоактивным, то есть они практически безопасны. Если их хранение организовать правильно, то угрозы для населения и окружающей среды такие хвостохранилища не представляют. Кроме того, в нашей стране они есть только в Краснокаменске (Забайкальский край).

На какой стадии ядерного топливного цикла образуются самые опасные отходы?

На стадии переработки отработавшего ядерного топлива. Надо отметить, что свежее топливо не представляет радиационной угрозы: таблетки уранового горючего можно держать в руках. Но когда уран делится в реакторе, происходит образование продуктов деления, и многие из них представляют серьезную радиационную угрозу. Однако исходящая от них опасность значительно снижает-ся с течением времени. Так, через 40 лет после из-влечения из реактора количество радиоактивных продуктов уменьшается в тысячу раз по сравнению с исходным. К тому же, объем высокоактивных от-ходов, образующихся при переработке отработавшего топлива, составляет очень незначительную долю (менее 1 %) от суммарного количества радиоактивных отходов, образующихся на всех стадиях ядерного топливного цикла. Если же учесть и хвостохранилища, то доля высокоактивных отходов не превысит 0,01 %. Высокоактивные отходы остекловывают, причем их объем за всю историю переработки отработавшего ядерного топлива в России в расчете на одного жителя нашей страны сравним с объемом мячика для гольфа.

Как обращаются с отходами атомных электростанций?

Первая стадия - их строгий учет и сбор. Учет необходим для обеспечения безопасности, учитывая недопустимость попадания радиоактивных веществ в окружающую среду, да и в руки террористов. Поэтому система учета и контроля радиоактивных веществ и радиоактивных отходов в России выведена на национальный уровень.Вторая стадия - компактификация, максимальное снижение объема отходов. Жидкие отходы выпаривают, твердые - прессуют и сжигают. Это позволяет снизить расходы на их хранение и окончательную изоляцию.Третья стадия - кондиционирование, на ней отходы переводят в химически стойкое, экологически безопасное состояние. Отходы с небольшой радиоактивностью допускается хранить в бочках и контейнерах, для более опасных материалов предусмотрены более надежные матрицы: блоки из цемента, битума или стекла. Финальная стадия - отправка радиоактивных отходов в специализированные храни-лища, а затем - на объект окончательной изоляции.

Стоит ли опасаться ввоза радиоактивных отходов в нашу страну из других государств?

В соответствии с существующими законами ввоз радиоактивных отходов на территорию нашей страны запрещен. В Россию допускается ввозить только отработавшие источники ионизирующего излучения и отработавшее ядерное топливо, произведенные в нашей стране и возвращаемые по межправительственному соглашению. Но отработавшее топливо неправильно называть отходами по одной простой причине: отходы - это те материалы, которые полностью исчерпали свой полезный ресурс, в которых нет ничего ценного. К от-работавшему топливу, в котором содержится несгоревший уран, плутоний, набор прочих изотопов, которые можно использовать в геологии, медицине, сельском хозяйстве, космосе и т.д., это не относится. Оно является источником ценных продуктов и может быть использовано повторно.

Чем опасны радиоактивные вещества?

Радионуклиды (радиоактивные ядра), как природные, так и техногенные, отличаются от стабильных ядер тем, что они могут самопроизвольно превращаться в ядра других эле-ментов. При этом ядро испускает радиацию, или, как ее называют специалисты, ионизирующее излучение. Радиация наносит определенный вред клеткам, вызывая отклонения в их работе. Правда, клетки успешно борются с этим воздействием, если дозы радиации невелики. Более того, в отсутствие обычного радиационного фона организм угнетается, снижается иммунитет. А вот в случае, если поток радиации мощный, клетки гибнут, что приводит к нарушению функций органов и тканей. Следует отметить, что в нашей обычной жизни вероятность попасть под такое сильное радиационное воздействие, чтобы это отразилось на здоровье, крайне мала. В обычной жизни средний россиянин получает от всех источников дозу радиации в 25-50 раз ниже, чем минимальная доза, для которой отмечаются хотя бы не-значительные вредные последствия.

Расскажите об условиях работы на урановых шахтах. Это опасно?

Сначала приведем исторический пример, относящийся к эпохе до открытия явления радиоактивности. Средневековые шахтеры из южной Саксонии часто болели и рано умирали от патологии легких, однако реже страдали болезнями суставов, потому что пили воду шахтного происхождения, содержащую уран. Конечно, об этом никто не знал. Поэтому неудивительно, что раньше работа на урановых шахтах была опасным делом, и уровень заболеваемости на урановых шахтах был довольно высок. Начали разбираться, в чем дело, и пришли к выводу: причина в высокой концентрации природного радиоактивного газа - радона, который является непременным спутником урановых месторождений. Поняв проблему, выписали «рецепт» - обеспечить хорошую вентиляцию шахт. Это возымело положительное действие, и сейчас по статистическим данным смертность рабочих при добыче урана не выше, чем на горнодобывающих предприятиях в других отраслях.

Облучаются только работники ядерной отрасли? Или нет?

И в других отраслях работники могут получить повышенную дозу радиации. В наибольшей степени здесь «отличился» нефтегазовый комплекс. Суть проблемы в том, что вместе с нефтью и газом из-под земли извлекаются природные радиоактивные вещества, на-пример, радий. Эти изотопы оседают на внутренних поверхностях трубопроводов, насосов, емкостей и приводят к существенному повышению радиационного фона. Когда этой проблемой занялись вплотную, выяснили, что дозы, получаемые сотрудниками нефтедобывающих предприятий, местами превышают предельные дозы для персонала АЭС, а миллионы тонн нефтешламов в соответствии с отечественными нормами должны рассматриваться как радиоактивные отходы.

Какой вклад вносит АЭС в мою годовую дозу?

Специалисты внимательно изучили этот вопрос и были удивлены. Вклад всех предприятий ядерной отрасли, последствий радиационных аварий и испытаний ядерного оружия в дозу среднего россиянина составляет около 0,3 %. Причем эта цифра остается справедливой для регионов, где расположены АЭС. Остальное - это природные источники и медицинские исследования. Исключение составляют области, загрязненные в результате радиационных аварий, но и там «атомный» вклад оказывается ниже медицинской составляющей.

Вероятность аварии на АЭС маленькая, но, все же, не нулевая. Как ее «обнулить»?

Вероятность аварии на любом крупном промышленном объекте никогда не будет равна нулю - это знают все, кто знаком с предметом математической статистики. В соответствии с канонами этой дисциплины, любое событие может произойти с той или иной вероятностью: существует даже вероятность (правда, очень малая) гибели от метеорита. Иными словами, «обнулить» возможность аварии не в нашей власти, зато в мы можем сделать ее пренебрежимо малой. На строящихся АЭС вероятность крупной радиационной аварии составляет 10–7 на реактор в год. Это сопоставимо с вероятностью падения на наш дом пусть не метеорита, но самолета. Вы же не боитесь жить в собственном доме?АЭС современных проектов безопасны еще и потому, что на них внедряются инновационные технические решения, позволяющие не допустить выброса радиоактивных веществ за пределы станции даже в случае тяжелой аварии.

Как вести себя в случае радиационной аварии?

Во-первых, неплохо бы удостовериться, что авария с выбросом радиации действительно произошла, а информация о ней не является «уткой», поскольку подобные провокации имели место неоднократно. Их число резко снизилось после открытия Интернет-сайта russianatom.ru, на котором в режиме он-лайн выводится информация с датчиков системы контроля радиационной обстановки предприятий Росатома. Если авария все же произошла, полагается тщательно закрыть окна и двери, сделать запас воды, надеть респираторы или марлевые повязки для защиты от радиоактивных аэрозолей, слушать радио, в соответствии с указаниями принимать йодсодержащие препараты и дожидаться отбоя тревоги или, при неблагоприятном развитии ситуации, эвакуации.

Зачем нужна «йодная профилактика»?

Одним из опасных радиоактивных изотопов, образующихся при работе ядерного реактора, является йод-131. Он способен избирательно накапливаться в щитовидной железе - органе, отвечающем за выработку двух важных гормонов, а нарушение работы щитовидной железы сказывается на работе организма в целом.Йодная профилактика заключается в следующем: люди, попавшие в зону радиоактивного загрязнения, принимают обычный йод: стабильный изотоп, содержащийся в препарате, вытесняет радиоактивный йод из щитовидной железы, и ее облучение значительно снижается. Можно принимать аптечный спиртовой раствор йода, разводя несколько капель в воде или молоке, но лучше пользоваться йодсодержащими препаратами. Например, табле-тированным йодидом калия.К счастью, угроза от йода-131 не является долгосрочной. Период полураспада этого изотопа составляет около 8 суток, значит, через несколько десятков дней после выброса его концентрация снижается до безопасных значений.Напоследок, совет. В случае провокации не пейте йод! Зафиксированы случаи, когда люди в результате беспочвенных слухов об аварии на АЭС выпивали столько спиртового раствора йода, что возникала необходимость в медицинской помощи.

Слышал, что спирт выводит радиоактивные вещества из организма. Так ли это?

Это популярное мнение давно можно было бы искоренить, но, к сожалению, оно активно поддерживается самими атомщиками. Однако за этим скрывается не более чем удобный повод для того, чтобы «сообразить на троих». Точно так же некоторые люди с надеждой заглядывают в календарь, чтобы посмотреть, нет ли сегодня какого-нибудь праздника? История о пользе спирта основана на реальных фактах: спирт реально взаимодействует со свободными радикалами - опасными соединениями, которые образуются в клетках при воздействии радиации и попадании в организм радиоактивных веществ. Проблема в том, что для достижения более-менее значимого эффекта по их нейтрализации необходимо вы-пить столько спирта, что это приведет к тяжелейшему отравлению организма. Нельзя за-бывать, что спирт - это яд. Для снижения последствий облучения и выведения радиоактивных веществ из организма разработаны специальные препараты - радиопротекторы. Не доставляя такого удовольствия, как распитие спиртных напитков, они, тем не менее, обладают куда более сильным эффектом.

Расскажите про «рыжий лес». Он до сих пор рыжий?

При аварии на Чернобыльской АЭС облако радиоактивных веществ накрыло близлежащий лесной массив. Особенно по-страдали хвойные деревья. Лиственные по-роды ежегодно сбрасывают листву и таким образом очищаются от радионуклидов, а для елей и сосен эта «опция» недоступна. В результате деревья погибли, а хвоя окрасилась в рыжий цвет. Фотографии «рыжего леса» активно используются в качестве аргумента, свидетельствующего об опасности ядерной энергетики. Но сопоставим факты: из-за наиболее серьезной радиационной аварии в истории человечества погибло 560 гектаров леса, в то время как «нормальная» работа Норильского комбината при-вела к уничтожению деревьев на тысяче-кратно большей площади - 600000 гектар! К слову, сейчас на месте «рыжего леса» зеленеет рощица, и поют птицы, хотя радиационный фон там значительно повышен."

Поделиться: