Мир 2 глубоководный аппарат. Глубоководный обитаемый подводный аппарат «Мир

История

Для исследовательских целей во всем мире было построено около полутора десятков подобных аппаратов. Но все они обладали одним существенным недостатком - привязка к кораблю обеспечения не позволяла вести автономных исследований.

Поэтому в мире стали строить мини-подлодки для исследовательских целей. Одним из первых такое «ныряющее блюдце» построил Ж.И. Кусто в 1957 году. Затем его примеру последовали другие конструкторы. В частности, сотрудники ленинградского института Гипрорыбфлота создали в 60-е годы XX века для Тихоокеанского НИИ морского рыбного хозяйства и океанографии 305-тонную субмарину «ТИНРО-1», способную «нырять» на 300 м, плавать там в любом направлении со скоростью 9 узлов, зависать над грунтом и садиться на него.

Пока первенец ленинградцев осваивался в стихии, инженеры работали над вторым аппаратом для дальневосточников. И вот 12 ноября 1974 года капитан Михаил Гире задраил крышку входного люка на «ТИНРО-2». Эта мини-субмарина была примерно в шесть раз короче предшественницы, в два раза уже и весила всего 10 т, при этом свободно оперировала на 400-метровой глубине.

В августе следующего года на Балтике началась проверка экспериментального подводного аппарата «ОСА-3-600», созданного на сей раз в московском отделении Гипрорыбфлота. Его стальной сферический корпус с четырьмя крыльчатыми движителями походил на «ныряющее блюдце» Кусто. Зато маневренность у «осы» была отменной, а рабочая глубина доходила до 600 м.

Словом, у каждого нового аппарата неизменно улучшаются те или иные характеристики и, конечно, увеличивается глубина погружения. Однако преодолеть километры, отделяющие поверхность океана от дна, способны только батискафы (в переводе с греческого - глубоководные суда).

В 1959 году в ленинградском отделении Гипрорыбфлота были созданы батискафы «Б-5» и «Б-11». Цифра в названии указывала максимальную глубину погружения в километрах. По замыслу разработчиков, каждый из них предстояло оснастить механической рукой-манипулятором, ловушкой для морских животных. При этом команда состояла из трех человек и могла вести и научные исследования.

Спустя шесть лет ленинградцы оформили проект «ДСБ-11» - батискафа, с помощью которого предполагалось изучать тектонические процессы на океанском дне.

Велись подобные разработки и за рубежом. В частности, в 70-е годы американские исследователи получили в свое распоряжение глубоководный аппарат «Алвин», известный, к примеру, тем, что в ноябре 1979 года обнаружил на дне Калифорнийского залива «черных курильщиков» - подводные гейзеры, выбрасывающие перегретую и насыщенную минеральными веществами воду. Причем вокруг каждого «курильщика» были обнаружены неведомые ранее формы жизни.

А в 1986 году «Алвин» опускался на дно в районе гибели знаменитого «Титаника ».

Гордостью же французов, в частности, является глубоководный аппарат «Наутил», способный работать на глубинах до 6 км. Титановый корпус позволяет команде из трёх человек вполне комфортно чувствовать себя на многокилометровой глубине.

Работает «Наутил» обычно в паре с подводным роботом «Робин», который при погружении располагается в носовой части аппарата. При достижении рабочей глубины робот начинает действовать самостоятельно, удаляясь от аппарата на длину соединительного кабеля (около 60 м).

Несколько особняком стоят глубоководные подводные аппараты Института океанологии имени П.П. Ширшова, базирующиеся на корабле науки «Академик Мстислав Келдыш».

Аппараты «Мир» были построены в 1987 году в Финляндии по совместному проекту Академии наук СССР и финского концерна «Раума-Репола». «Миры» рассчитаны на максимальную глубину погружения 6000 м. Это делает доступными для них 99 % акватории и дна Мирового океана - за исключением самых глубоких впадин.

Для противостояния давлению в 600 атмосфер отсеки прочного корпуса собраны из полусфер, отлитых из высоколегированной никелевой стали, которая оказалась вдвое прочнее, чем даже титановый сплав. По скорости подводного хода, возможности вертикального маневрирования, энергообеспечению и длительности пребывания под водой «Мирам» нет равных. В первую очередь это обеспечивается железоникелевыми аккумуляторами емкостью около 100 КВт/ч, что вдвое больше, чем у аналогов.

Со специальным обтекателем скорость аппарата доходит до 5 узлов. Обычно же для исследовательских работ достаточно и 3 узлов.

Гордость конструкторов - система балластировки, подобная той, что принята на подлодках: погружение и всплытие производятся путём заполнения водой и осушения балластных цистерн. Другие аппараты, как правило, всплывают за счёт сбрасывания балласта - крупной дроби из стали.

«Миры» оборудованы всеми необходимыми приборами для океанологических измерений, фото- и видеоаппаратурой. Силовые приводы и микропроцессорная система управления забортными манипуляторами позволяют и поднимать предметы весом до 80 кг, и весьма деликатно обращаться с биологическими объектами: на испытаниях оператор перекладывал сырое куриное яйцо, не повреждая его.

Связь с поверхностью поддерживается с помощью гидроакустической аппаратуры, что обеспечивает максимальную мобильность мини-подлодок. В особых случаях к аппарату можно пристыковать оптико-волоконный кабель для ведения «живой» трансляции с морского дна.

Запас кислорода и поглотителя углекислоты рассчитан на 10 часов работы экипажа из трёх человек плюс резерв на трое суток для аварийной ситуации.

Первое погружение на предельную глубину глубоководный обитаемый аппарат «Мир-1» совершил 13 декабря 1987 года. Экипаж в составе профессора И.Е. Михальцева, заведующего лабораторией научной эксплуатации глубоководных обитаемых аппаратов Института океанологии, доктора технических наук A.M. Сагалевича и финского пилота П. Лааксо опустился в Атлантическом океане до самого дна, на глубину 6170 м. На следующий день тот же экипаж, пересевший на «Мир-2», ещё раз опустился на дно Атлантики, достигнув глубины 6120 м.

В 1994 году американский World Technology Evaluation Center (центр, который регистрирует новейшие технологии) назвал «Миры» «...лучшими глубоководными обитаемыми аппаратами из когда-либо построенных в мире».

К 2007 году оба аппарата совершили более 300 погружений в рамках 35 научных экспедиций в трёх океанах. Они участвовали в самых разнообразных работах - от изучения таинственных «черных курильщиков» до герметизации корпуса затонувшей атомной подводной лодки «Комсомолец», лежащей на глубине 1700 м. А мировую популярность аппаратам принесли съёмки на затонувшем «Титанике» по заказу американских кинематографистов.

Чтобы доказать, что территория арктического дна геологически представляет собой часть Сибирской континентальной платформы, в сентябре 2007 года было совершено погружение «Мира-1» и «Мира-2» на дно Северного Ледовитого океана в точке географического Северного полюса.

Конструкция

Конструкция батискафа FNRS-3 Весьма перспективно использовать в качестве наполнителя поплавка литий - металл с плотностью почти в два раза меньшей, чем у воды (точнее 534 кг/м 3), это значит, что один кубический метр лития может удерживать на плаву почти на 170 кг больше, чем один кубический метр бензина. Однако литий - щелочной металл , активно реагирующий с водой , следует каким-то образом надёжно разделить эти вещества, не допустить их контакта. Механические свойства некоторых конструкционных материалов

Электропитание батискаф получает от аккумуляторов . Изолирующая жидкость окружает аккумуляторные банки и электролит , на неё через мембрану передаётся давление забортной воды. Аккумуляторы не разрушаются на огромной глубине.

Батискаф приводится в движение электрическими двигателями , движители - гребные винты . Электродвигатели защищаются таким же способом, как и аккумуляторные батареи. Если у батискафа отсутствует судовой руль - тогда поворот производился включением только одного двигателя, разворот почти на месте - работой двигателей в разные стороны.

Скорость спуска и подъём батискафа на поверхность регулируется сбрасыванием основного балласта в виде стальной или чугунной дроби , находящейся в воронкообразных бункерах. В самом узком месте воронки стоят электромагниты , при протекании электрического тока под действием магнитного поля дробь как бы «затвердевает», при отключении тока она высыпается.

Батискаф с поплавком, заполненным литием , будет иметь интересную особенность. Так как литий практически несжимаем, то при погружении относительная плавучесть батискафа будет увеличиваться (на глубине плотность морской воды возрастает), и батискаф «зависнет». Батискаф должен иметь компенсирующий отсек с бензином; для того, чтобы продолжить спуск, необходимо выпустить часть бензина, тем самым уменьшив плавучесть.

Система аварийного всплытия представляет собой аварийный балласт, подвешенный на раскрывающихся замках. От раскрытия замки удерживаются электромагнитами, для сброса достаточно отключить электрический ток. Аналогичное крепление имеют аккумуляторные батареи и гайдроп - длинный расплетённый свободно свисающий стальной канат или якорная цепь . Гайдроп предназначен для уменьшения скорости спуска (вплоть до полной остановки) непосредственно у морского дна. Если аккумуляторы разряжаются - автоматически происходил сброс балласта, аккумуляторов и гайдропа, батискаф начинает подъём на поверхность.

Погружение и всплытие батискафов

  • На поверхности батискаф удерживается за счёт отсеков, заполненных бензином и благодаря тому, что цистерны водяного балласта, шахта для посадки экипажа в гондолу и свободное пространство в бункерах с дробью заполнены воздухом.
  • После того, как цистерны водяного балласта, шахта для посадки экипажа в гондолу и свободное пространство в бункерах с дробью заполняются водой, начинается погружение. Эти объёмы сохраняют постоянное сообщение с забортным пространством для выравнивания гидростатического давления во избежание деформации корпуса.
  • Так как бензин (при высоком давлении) сжимается больше, чем вода, выталкивающая сила уменьшается, скорость погружения батискафа увеличивается, экипаж должен постоянно сбрасывать балласт (стальную дробь).

Определим массу полого шара: G = 1 6 π (D 3 − d 3) γ m {\displaystyle G={\frac {1}{6}}\pi (D^{3}-d^{3})\gamma _{m}}

Определим массу вытесненной шаром воды (при полном его погружении): V = 1 6 π D 3 γ v {\displaystyle V={\frac {1}{6}}\pi D^{3}\gamma _{v}} , где

D {\displaystyle D} - наружный диаметр батисферы;

D {\displaystyle d} - внутренний диаметр батисферы;

- удельный вес материала, из которого сделан корпус батисферы;

γ v {\displaystyle \gamma _{v}} - удельный вес морской воды ;

π {\displaystyle \pi } - число «Пи» .

Нас интересует толщина стенки батисферы, при которой возможно плавание в толще воды: S = D − d 2 {\displaystyle S={\frac {D-d}{2}}}

Поэтому приравняем оба уравнения (так как V = G {\displaystyle V=G} ) :

1 6 π (D 3 − d 3) γ m = 1 6 π D 3 γ v {\displaystyle {\frac {1}{6}}\pi (D^{3}-d^{3})\gamma _{m}={\frac {1}{6}}\pi D^{3}\gamma _{v}}

Теперь разделим обе его части на произведение 1 6 π D 3 {\displaystyle {\frac {1}{6}}\pi D^{3}} , после чего получим: (γ m − d 3 D 3) γ m = γ v {\displaystyle (\gamma _{m}-{\frac {d^{3}}{D^{3}}})\gamma _{m}=\gamma _{v}}

Теперь определим отношение d D {\displaystyle {\frac {d}{D}}} , разделив предыдущее равенство на γ m {\displaystyle \gamma _{m}} , получим d D = 1 − γ v γ m 3 {\displaystyle {\frac {d}{D}}={\sqrt[{3}]{1-{\frac {\gamma _{v}}{\gamma _{m}}}}}}

Примем: удельный вес морской воды γ v = 1 , 025 {\displaystyle \gamma _{v}=1,025} , удельный вес стали γ m = 7 , 85 {\displaystyle \gamma _{m}=7,85} , тогда d D = 0 , 9544 {\displaystyle {\frac {d}{D}}=0,9544} , отсюда S = D − d 2 = D 1 − 0 , 9544 2 = 0 , 0229 D {\displaystyle S={\frac {D-d}{2}}=D{\frac {{1}-{0,9544}}{2}}=0,0229D}

Таким образом, для того, чтобы стальная полая сфера плавала в толще воды, толщина её стенки должна составлять 0 , 0225 {\displaystyle 0,0225} наружного диаметра. Если стенка будет толще - батисфера утонет (ляжет на дно), если тоньше - всплывёт на поверхность.

Теперь рассчитаем, при каком давлении P {\displaystyle \mathrm {P} } будет раздавлена батисфера. Предположим, кораблестроители использовали довольно прочную сталь с допускаемым напряжением 5 000 кг/см 2 (обозначается σ {\displaystyle \sigma } ):

σ = P D 4 S {\displaystyle \sigma ={\frac {\mathrm {P} D}{4S}}} - элементарная формула прочности шара, испытывающего сжатие под давлением воды,

отсюда P = σ 4 S D = 5000 × 4 × 0 , 0229 = 458 k g / c m 2 {\displaystyle \mathrm {P} ={\frac {\sigma 4S}{D}}=5000\times 4\times 0,0229=458~kg/cm^{2}} . Данное давление соответствует глубине погружения 4 500 метров.

Если кораблестроители возьмут алюминиевый сплав с удельным весом γ m = 2 , 8 {\displaystyle \gamma _{m}=2,8} и σ = 6000 {\displaystyle \sigma =6000} кг/см 2 , тогда 1 − 1 , 025 2 , 8 3 = 0 , 86 {\displaystyle {\sqrt[{3}]{1-{\frac {1,025}{2,8}}}}=0,86} , а S = 1 − 0 , 86 2 = 0 , 0705 {\displaystyle S={\frac {{1}-{0,86}}{2}}=0,0705} , тогда P = σ 4 S D = 6000 × 4 × 0 , 0705 = 1692 k g / c m 2 {\displaystyle \mathrm {P} ={\frac {\sigma 4S}{D}}=6000\times 4\times 0,0705=1692~kg/cm^{2}} . Данное давление соответствует глубине погружения 16000 метров, этого будет достаточно чтобы покорить «

Если вы когда-нибудь смотрели знаменитые фильмы команды Кусто про подводный мир, то вы не могли не запомнить удивительные, похожие на космические корабли подводные аппараты - батискафы. Так чем интересен батискаф, что такое можно с помощью него исследовать? С помощью этих судов человек может погрузиться в океанские пучины для научных наблюдений и познания загадочнх глубин Мирового океана.

Этимология названия

Своим названием батискаф обязан Огюсту Пиккару - изобретателю, придумавшему этот аппарат. Слово образовано от пары греческих слов, которые обозначают "судно" и "глубокий". В 2018 году "глубоководное судно" будет отмечать 80-летний юбилей.

Изобретение батискафа

Пиккар изобрел глубоководный аппарат вскоре после окончания Второй мировой войны, в 1948 году. Предшественниками батискафов были батисферы - глубоководные аппараты в форме шара. Первое такое судно было изобретено в Америке в 30-х годах ХХ века и умело погружаться на глубины до 1000 метров.

Отличие батискафа и батисферы заключается в том, что первые умеют самостоятельно двигаться в толще воды. Хотя скорость перемещения невелика и составляет 1-3 узла, но этого достаточно для выполнения возложенных на аппарат научно-технических задач.

До войны швейцарец работал над стратостатом, и ему пришла идея сделать подводное судно схожее по принципам устройства с такими летательными аппаратами, как дирижабль и аэростат. Только у батискафа вместо аэростатного баллона, который заполняется газом, баллон должен быть заполнен каким-либо веществом, имеющим плотность, меньшую, чем плотность воды. Таким образом, принцип работы батискафа напоминает поплавок.

Устройство батискафа

Как же устроен батискаф, что такое гондола и поплавок? Конструкция различных моделей батискафов схожа друг с другом и включает в себя две части:

  • легкий корпус, или как его еще называют - поплавок;
  • прочный корпус, или так называемая гондола.

Основное назначение поплавка - удерживать батискаф на необходимой глубине. Для этого в легком корпусе оборудуются несколько отсеков, наполняемых веществом, имеющим меньшую, чем у соленой воды, плотность. Первые батискафы наполнялись бензином, а современные используют уже другие наполнители - различные композитные материалы.

Научное оборудование, различные системы управления и обеспечения, экипаж батискафа размещаются внутри прочного корпуса. Сферические гондолы первоначально изготавливались из стали.

Современные подводные судна имеют прочный корпус, изготовленный из титановых, алюминиевых сплавов или композитных материалов. Они не подвержены коррозии и удовлетворяют требованиям по прочности.

Чем рискованно погружение на батискафе?

Основная проблема всех глубоководных аппаратов и субмарин - огромное давление воды, увеличивающееся с глубиной. Корпус сдавливает все сильннее и сильнее, а локатор батискафа равномерно погружается вниз.

Недостаточно прочный корпус подводного судна может быть деформирован или разрушен, что приведет к затоплению судна и потере дорогостоящего исследовательского оборудования и гибели людей. Недостаточно качественно спроектированные аккумуляторные батареи, большое количество сложной электроники, химических веществ и материалов от сжатия корпуса на больших глубинах повышают вероятность возгорания и возникновения аварийных ситуаций.

Кроме того, ограниченные возможности в обзоре пространства вокруг аппарата несут в себе угрозу столкновения батискафа со скалами или другими препятствиями. Локатор батискафа, равномерно погружающегося вертикально в толщу воды, не всегда может их обнаружить в связи с особенностями распространения акустических волн в водной среде.

Так что погружение этого судна - сложная и ответственная операция, требующая тщательной и заблаговременной подготовки.

Первые батискафы

Первый батискаф, изобретенный О. Пиккаром, имел название "FNRS-2", прослужил на французском флоте 5 лет и был выведен из строя в 1953 году. В качестве наполнителя в данном аппарате был использован бензин, который имеет в 1,5 раза меньшую, чем у воды, плотность.

Кабина батискафа, как и в воздухоплавании, называемая гондола, имела сферическую форму и толщину стенок в 90 мм. В ней достаточно свободно могли расположиться два человека.

Основной недостаток FNRS-2 заключался в месторасположения люка для входа в батискаф. Он был в подводной части аппарата. Войти и покинуть гондолу батискафа можно было лишь в том случае, если аппарат находился на судне-носителе.

Второй моделью батискафа стал FNRS-3. Этот аппарат стал использоваться для глубоководных исследований с 1953 года и вплоть до 70-х годов двадцатого века. Это судно стало музеем. В настоящее время FNRS-3 находится во Франции, в г. Тулоне.

По инженерным расчётам, аппарат, как и его предшественник, мог погружаться на глубины до 4 километров. Судно имело одинаковую с FNTS-2 конструкцию гондолы, но в остальном модель была значительно доработана.

Технические характеристики

Батискафы разных поколений можно сравнить с помощью их технических характеристик.

"Триест" (модернизированный)

"Архимед"

"Цзяолун"

Deepsea Chalanger

Год начала эксплуатации

Италия, Германия, затем США

Частная компания из Австралии

Диаметр гондолы (наружний/ внутрений), мм.

Толщина стенок гондолы, мм

Сухой вес, т

Используемая жидкость в поплавке

синтактическая пена

Объем жидкости в поплавке, л

Экипаж, чел

Глубина погружения, м

Батискаф "Триест"

Чем знаменит этот батискаф, что такое это за судно можно более детально понять дале? На "Триесте" в начале 1960 года было совершено первое погружение на дно Марианской впадины в Тихом океане. Эту операцию под кодовым названием "Проект Нектон" проводило ВМС США в сотрудничестве с сыном изобретателя батискафа Жаком Пикаром.

Несмотря на штормовую погоду 26 января состоялось первое в истории человечества погружение на 10900 метров. Главное открытие, сделанное исследователями в этом день - на дне Марианской впадины есть жизнь.

Батискаф Deepsea Chalanger

Этот аппарат, названный в честь глубоководной впадины, знаменит тем, что на нём в марте 2012 года совершил Джеймс Кэмерон. Знаменитый кинорежиссер 26 марта достиг дна Бездны Челленджера - еще одно название Марианской впадины.

Это был четвертый по счету спуск в самой глубокой точке океана в истории человечества примечательный тем, что оказался самым длительным по времени и совершался одним человеком. Локатор батискафа, равномерно погружающегося вертикально в пучину, обследовал дно, а режиссёр набрался вдохновения для создания продолжения фантастического фильма «Аватар».

Локатор батискафа

Гидроакустическая станция - это локатор батискафа, равномерно обследующий толщу воды и обнаруживающий скалы, дно и другие препятствия. Это, пожалуй, единственное средство, позволяющее «видеть», а точнее "слышать" под водой. Локатор батискафа, равномерно погружающегося на глубину, по сути, является ушами аппарата.

Происшествия с батискафами

В августе 2005 года у берегов Камчатки случилось затопление батискафа ВМФ Российской Федерации. Глубоководный аппарат с экипажем из семи человек запутался в рыболовецких сетях на глубине около 200 метров.

На место происшествия прибыли спасательные корабли, которые попытались переместить батискаф в меньшие глубины, чтобы затем осуществить спасательную операцию с помощью водолазов. После безуспешных попыток, российские моряки обратились к британским коллегам.

Совместная российско-британская спасательная операция с использованием глубоководного робота завершилась успехом, весь экипаж оказался спасен, а батискаф поднят на поверхность.

January 27th, 2014

Я вчера вам рассказывал о том, что и это вызвало неоднозначную реакцию. Звучали такие выражения, как «… а вот раньше наши батискафы к Титанику опускались». Оказывается мало кто знал, что «Миры» были построены в Финляндии по заказу СССР.

«Мир» - серия российских научно-исследовательских подводных глубоководных обитаемых аппаратов (ГОА) для океанологических исследований и спасательных работ. Имеют глубину погружения до 6 км. Базируются на борту научно- исследовательского судна «Академик Мстислав Келдыш».

Давайте узнаем про них подробнее …

Глубоководные обитаемые аппараты (ГОА) «Мир-1″ и «Мир-2″ были построены в Финляндии фирмой Rauma‑Repola в 1987 году. Идея аппаратов и начальный проект были проработаны в АН СССР и КБ «Лазурит». Аппараты создавались под научно-техническим руководством ученых и инженеров Института океанологии РАН имени П.П.Ширшова.

Создание аппаратов было начато в мае 1985 года и закончено в ноябре 1987 года. В декабре 1987 года были проведены глубоководные испытания аппаратов в Атлантике на глубине 6170 метров («Мир-1″) и 6120 метров («Мир-2″). Аппараты были установлены на судне обеспечения “Академик Мстислав Келдыш”, построенном в 1981 году в Финляндии и переоборудованном в 1987 году для проведения работ с глубоководными испытательными аппаратами.

ГОА «Мир 1″ и «Мир 2″ идентичны по конструкции и рассчитаны на рабочую глубину погружения 6000 м. Общая емкость аккумуляторных батарей одного аппарата составляет 100 кВт/ч, что позволяет выполнять подводные операции в течение 17 20 часов непрерывного подводного цикла. Кроме того, это позволяет устанавливать на оба аппарата большой комплекс научного и навигационного оборудования.

Подводная скорость аппарата «Мир» равна 5 узлам. Для балластировки у него используется водяной балласт. Перед уходом аппарата с поверхности морская вода заполняет пластиковые цистерны главного балласта емкостью 1,5 куб. м, которые продуваются сжатым воздухом, когда аппарат выходит на поверхность после погружения. Плавучесть аппарата регулируется с помощью системы переменного балласта путем приема воды в три прочные сферы и откачки ее из сфер насосом высокого давления.

Корпус аппаратов изготовлен из мартенситовой, сильно легированной стали, с 18 % никеля. Сплав имеет предел текучести - 150 кг на квадратный мм (у титана - около 79 кг/ кв.мм). Производитель: финская фирма «Локомо», входящая в состав концерна «Раума Репола». Размещение экипажа Экипаж ГОА «Мир» состоит из трех человек - пилота, инженера и ученого-наблюдателя.

Длина аппарата «Мир» 7,8 м, ширина (с боковыми двигателями) 3,8 м, высота 3 м. Обзор из обитаемой сферы аппаратов «Мир» обеспечивается тремя иллюминаторами: центральным, имеющим внутренний диаметр 200 мм, и двумя боковыми диаметром 120 мм. Расположение иллюминаторов дает широкий угол обзора для пилота и наблюдателей. Запас плавучести аппарата «Мир» на дне равен 290 кг. Сухой вес 18,6 т. Запас жизнеобеспечения 246 чел./час. ГОА «Мир» оснащены навигационным и научным оборудованием, фото и видеосистемами, манипуляторами, устройствами отбора проб и т. д.

Система аварийного спасения у аппарата состоит из синтактикового буя, выпускаемого экипажем, с прикреплённым к нему кевларовым тросом, длиной 7000 м, по которому опускают половину сцепки (такую же, как железнодорожная автосцепка). Она доходит до аппарата, затем происходит автоматическая сцепка, и аппарат поднимают на длинном силовом тросе, длиной 6500 м, с усилием на разрыв около десяти тонн.

По состоянию на 2008 год, в мире, кроме российских «Мир-1» и «Мир-2», существуют ещё два аппарата (построено было три). Американский аппарат «Си Клиф» (Sea Cliff) (англ. DSV Sea Cliff), который сейчас переоборудуется, французский «Нотил» (Nautile) (фр. Nautile), оба с глубиной погружения 6000 метров, и японский «Шинкай 6500» (Shinkai 6500), поставивший рекорд погружения для существующих аппаратов в 6527 метров.

С применением ГОА «Мир-1″ и «Мир-2″ проведено 35 экспедиций в Атлантический, Тихий и Индийский океаны, из них девять экспедиций по ликвидации последствий аварий атомных подводных лодок (АПЛ) «Комсомолец» и «Курск». Разработан ряд новейших глубоководных технологий и методик, что позволило осуществлять многолетний радиационный мониторинг на АПЛ «Комсомолец», которая находится на дне Норвежского моря на глубине 1700 метров, и произвести частичную герметизацию носовой части лодки. В район гибели АПЛ «Комсомолец» в Норвежском море было проведено семь экспедиций в период 1989-1998 годах.

В конце сентября 2000 аппараты использовались для обследования АПЛ «Курск». Российскими научными учреждениями разработана методика, которая позволила с помощью аппаратов «Мир» провести детальное обследование АПЛ «Курск», определить причину ее аварии и разработать меры по ликвидации последствий этой аварии.

В 1991 и 1995 годах с помощью «Миров» производились исследования корпуса «Титаника», лежащего на глубине 3800 метров. В процессе погружений были проведены уникальные киносъемки, которые были использованы для создания художественных и научно-популярных фильмов, среди которых - Titanica, Titanic, Bismarck, Aliens of the Deep, Ghost of the Abyss.

В январе-сентябре 2004

В январе-сентябре 2004 года силами Института океанологии РАН совместно с ФГУП «Факел» был проведен капитальный ремонт аппаратов «Мир» с их полной разборкой, испытаниями прочности корпусов, частичной заменой элементов, узлов и оборудования, последующей сборкой и испытаниями вновь собранных аппаратов. В результате «Мир-1″ и «Мир-2″ получили сертификат на класс от международного регистра «Германский Ллойд» до 2014 года.

2 августа 2007 года в рамках экспедиции «Арктика-2007″ был совершен первый в мире спуск глубоководных обитаемых аппаратов «Мир» в точке географического Северного полюса на глубину 4300 метров. Во время этого беспрецедентного погружения на дне был установлен титановый российский флаг и капсула с посланием будущим поколениям. Аппараты выдержали давление в 430 атмосфер. Достижения этой экспедиции занесены в книгу рекордов Гиннеса.

Арктическое погружение вызвало большой общественный резонанс, поскольку некоторые российские комментаторы высказали мнение, что Россия «застолбила» свои права на участок океанского дна между Новосибирскими островами и Северным полюсом, хотя с точки зрения международного права это действие являлось юридически ничтожным.

Погружение глубоководных обитаемых аппаратов «Мир-1″ и «Мир-2″ в точке Северного полюса — первое в истории. Эта экспедиция позволит впервые детально изучить строение дна в приполюсном районе и уточнить границы российского шельфа в районе, простирающемся от Новосибирских островов до полюса.

На самом деле одна из целей экспедиции — установить, являются ли подводные хребты Ломоносова и Менделеева, которые тянутся к Гренландии, геологическим продолжением российского континентального шельфа.

Также члены экспедиции выполнили ряд научных экспериментов, взяли пробы грунта и фауны. Кроме того, в рамках погружения на дне океана был установлен российский триколор и оставлена капсула с посланием россиян, «Сердцем Мира» — талисманом молодежной команды «Небесная Одиссея» и флагом «Единой России».

Отвечая на вопрос о задачах нынешней экспедиции российских исследователей на Северный Полюс, глава МИД РФ Сергей Лавров сказал: «Цель этой экспедиции — не застолбить права России, а доказать, что наш шельф простирается к Северному полюсу». Министр выразил надежду на то, что нынешняя экспедиция и погружение батискафа в районе Северного полюса «позволят получить дополнительные научные доказательства того, что мы собираемся добиться».

В 2008 году оба российских глубоководных аппарата закончили погружение на дно озера Байкал и благополучно поднялись на поверхность. Для первого погружения была выбрана точка недалеко от острова Ольхон, примерно в 10 км к востоку от берега Байкала между мысами Ижимей и Хара-Хушун, где озеро достигает максимальной глубины. Экспедиции повезло с погодой: если в понедельник на Байкале были шторм, двухметровые волны и непрерывный дождь, то с утра во вторник установился полный штиль и светит яркое солнце. «Мир-1» пилотирует начальник экспедиции, заведующий лабораторией научной эксплуатации глубоководных обитаемых аппаратов Института океанологии РАН, профессор Анатолий Сагалевич.

С ним на борту находятся президент Республики Бурятия Вячеслав Наговицын и председатель попечительского совета Фонда содействия сохранению озера Байкал Михаил Слипенчук. В составе второго экипажа — пилот Евгений Черняев, депутат Госдумы Владимир Груздев и директор Байкальского института природопользования РАН Арнольд Тулохонов.

Напомним, Байкал — самый глубокий на Земле внутренний водоем и самый большой резервуар пресной воды. В июне 2008 года по результатам Интернет-опроса озеро было признано одним из семи чудес России.

В августе-сентябре батискафы «Мир-1» и «Мир-2» совершили 60 погружений в различных точках Байкала. Затем экспедиция прервалась на зиму. На 2009 год было выполнено 100 погружений.

Ученые вели визуальные наблюдения, брали пробы воды на разных глубинах, изучали фауну озера и геологическую структуру дна. Кроме того, они надеялись найти в глубинах озера археологические артефакты.

По словам депутата Госдумы, известного полярника Артура Чилингарова, также участвующего в экспедиции, главное для ее участников — не рекордные погружения, а забота об экологии Байкала.

«Любое погружение — это страница в истории. Никаких рекордов мы не собираемся ставить. Мы хотим обратить внимание и рассказать, что нужно предпринять российскому государству, чтобы сохранить это озеро», — заявил ранее Чилингаров.

Премьер министр России Владимир Путин совершил погружение на дно озера 1 августа 2009 года. В общей сложности «экскурсия» на аппарате «Мир 1″ по дну Байкала заняла около 4 часов. Во время погружения Путин выходил на связь с журналистами. В тот момент «Мир 1″ находился в самой глубокой точке южной части озера 1395 метров. Путин признался журналистам, что был несколько удивлен непрозрачностью воды, назвав ее «супом из планктона».

Джеймс Кэмерон совершил погружение на дно Байкала 16 августа 2010 года в день своего рождения и провел под водой четыре с половиной часа. Максимальная глубина, на которой он оказался, составила 1380 метров.

В 2011 году российские батискафы «Мир-1» и «Мир-2» провели первое погружение на дно Женевского озера - одного из самых больших, но практически не изученных водоемов Европы. Полномасштабная программа его исследования стартовала накануне и будет продолжаться все лето. В Швейцарии и Франции хотели узнать, что скрывается под этой живописной водной гладью, и жаждут открытий.
Первыми на глубину ушли герои России Анатолий Сагалевич (он руководит экспедицией), американец Дон Волш (он был на дне Марианской впадины) и швейцарец Бертран Пикар. Для него, правда, привычнее другая стихия. Пикар - воздухоплаватель и создатель первого в мире самолета на солнечных батареях.

Батискафы достигли отметки почти в 300 метров - это максимальное значение для Женевского озера. Как сообщил Анатолий Сагалевич, на дне разглядели обломки парохода «Рона» (его крушение вековой давности унесло 15 жизней) и нескольких рыбок. Впереди было еще около сотни погружений с забором грунта и проб воды.

В течение 20 лет ГОА «Мир» совершили более 800 погружений, около 80 процентов которых были выполнены на глубинах от 3000 до 6000 метров. При этом не было ни одной аварийной ситуации. Несомненно, в этом заслуга профессиональной группы подводников Института океанологии, которые полностью обеспечивают работы ГОА «Мир» - от разработки нового оборудования, модернизации систем ГОА, проведения ремонтных и регламентных работ до пилотирования аппаратов под водой.

Характеристики глубоководных аппаратов «Мир» Рабочая глубина погружения – 6000 метров Нахождение под водой – до 80 часов Запас энергообеспечения – 100 кВт‑час Запас жизнеобеспечения – 246 чел.‑час Максимальная скорость – 5 узлов Запас плавучести (с поверхности) – 290 килограммов Сухой вес – 18,6 тонны Длина – 7,8 метра Ширина (с боковыми двигателями) – 3,8 метра Высота – 3 метра Диаметр – 2,1 м Экипаж – 3 человека Выход в верхней части Принцип работы Погружение – балластные цистерны заполняются водой Подъем – выключаются насосы, вода выкачивается Ходовой электродвигатель – питается от аккумуляторов. Скорость движения – 9 км/ч.

источники

http://sea-transport.ru/glubokovodnie-apparati/247-mir.html

http://www.ntv.ru/novosti/231185

http://ria.ru/science/20070802/70224087.html

http://for-ua.com/world/2008/07/29/165500.html

http://www.oceanology.ru/submersible-mir/

Давайте вспомним еще или например как выглядит . А вот необычная . Вспомним еще историю изучения Марианской впадины — Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Прошедший в конце июня Международный военно-морской салон дал множество интересных новостей. Среди них были сообщения о разработках российских специалистов в области строительства глубоководных аппаратов. Сайт телеканала «Звезда» собрал пять самых интересных исследовательских и спасательных глубоководных аппаратов, которые используются Военно-морским флотом РФ.Глубоководный аппарат «Русь» и его модернизированная версия «Консул» Первым глубоководным аппаратом третьего поколения, построенным в России, стал аппарат «Русь». Ему долгое время принадлежал рекорд по погружению среди российских аппаратов. Он смог опуститься на 6180 метров.Аппарат принадлежит ВМФ РФ и предназначен для проведения исследований и подводных работ. Он может выполнять подводные технические работы с помощью манипуляторного устройства, обследовать подводные сооружения и объекты, доставлять на грунт или поднимать на поверхность предметы массой до 200 кг.Кроме того, он может перемещаться не только вертикально, но и горизонтально со скоростью до 3 узлов.На его борту находятся: гидроакустический комплекс с антенными устройствами, специализированный манипуляторный комплекс, забортная телекамера в прочном боксе, станция звукоподводной связи. Аппарат оборудован надежной системой безопасности. Впервые в мире предусмотрен отстрел нижней части аппарата при его аварийном прилипании к илу или грунту дна.Российские специалисты разработали модернизированную версию аппарата, который получил название «Консул» от слов «конкреции сульфида». Хоть аппарат и схож с батискафом проекта «Русь» по основным характеристикам, но предназначен для проведения геолого-геофизических исследований морского шельфа. «Консул» 14 мая 2011 года смог опуститься на глубину 6270 м.Батискафы «Мир-1» и «Мир-2» Два российских научно-исследовательских глубоководных обитаемых аппарата внесли огромный вклад в исследование мирового океана и озера Байкал. Батискафы могут погружаться до 6 км.В настоящее время аппарат «Мир-1» находится в качестве экспоната в калининградском Музее Мирового океана, а «Мир-2» базируется на борту научно-исследовательского судна «Академик Мстислав Келдыш».
«Миры» использовались во время экспедиции к затонувшей атомной подлодке «Комсомолец». Тогда аппараты 70 раз опускались на глубину 1700 м. В 2000 году опускались к АПЛ «Курск», чтобы установить причину гибели субмарины.С применением ГОА «Мир-1» и «Мир-2» в период 1987 по 1991 год проведено 35 экспедиций в Атлантический, Тихий и Индийский океаны, а 2 августа 2007 года впервые в мире было достигнуто дно Северного Ледовитого океана на Северном полюсе, где был размещён Российский флаг и капсула с посланием будущим поколениям.АС-30 Военно-морской флот России использует глубоководные аппараты проекта 1855 шифр «Приз».Одним из самых современных аппаратов этой серии считается аппарат АС-30. Недавно он прошел модернизацию, в ходе которой на нем полностью было заменено морально устаревшее специальное оборудование на системы цифрового поколения.В отличие от «Миров» этот в задачу аппарата не входят научные и океанографические исследования, он предназначен для спасения экипажей с аварийных подводных лодок путем стыковки к аварийным выходам подлодок.
Эксперты считают аппараты этого проекта самыми эффективными аппаратами спасения в российском флоте.Аппарат был оснащен телекамерами, манипуляторами способными перерезать металлические тросы диаметром до 10 мм, вести подводные сварочные работы, закручивать и выкручивать гайки. Он обладает специальным устройство для стыковки с комингс-площадкой подводной лодки, через которую подводники покидают аварийную субмарину.АС-34 Еще один аппарат этой серии АС-34 находится в строю ВМФ РФ. Он располагается на борту спасательного судна «Георгий Титов». Модернизация, которую недавно прошел АС-34, позволила продлить срок службы батискафа до 2032 года.
Корпус спасательного судна выполнен из титана. И хотя рабочая глубина СГА 500 метров, но при необходимости аппарат может опускаться и на глубину 1000 метров и эвакуировать подводников с аварийной лодки при повышенной задымленности, и с повышенным давлением. Второй отсек АС-34 используется как барокамера. Данный аппарат может принять на борт до 20 подводников.Обычно экипаж батискафа - три человека. Запас кислорода для работы трех человек рассчитан на 120 часов. На ситуацию со спасенными людьми - на 10 часов.Бестер-1 Еще одним новейшим глубоководным спасательным аппаратом является АС-40 «Бестер-1». В прошлом году он заступил на боевое дежурство во Владивостоке. Уникальный батискаф, превосходящий зарубежные аналоги, способен с глубины более 700 метров «сухим» путем эвакуировать экипаж терпящей бедствие подводной лодки.Он находится на борту головного спасательного судна Тихоокеанского флота «Игорь Белоусов», не имеющего ограничений по мореходности.
Отличительной особенностью «Бестера» является также то, что он быстро может стать мобильным. По словам экспертов, аппарат может использоваться не только с борта «Игоря Белоусова», но и с других спасательных судов, после того как будет оперативно переброшен грузовым самолетом на любой из флотов.

Купить диплом о высшем образовании, означает обеспечить себе счастливое и успешное будущее. В наши дни без документов о высшем образовании никуда не удастся устроиться на работу. Только с дипломом можно пытаться попасть на место, которое принесет не только выгоду, но и удовольствие от выполняемой работы. Финансовый и общественный успех, высокий социальный статус – вот что приносит обладание дипломом о высшем образовании.

Сразу после окончания последнего школьного класса большинство вчерашних учеников уже твердо знают, в какой ВУЗ они хотят поступить. Но жизнь несправедлива, а ситуации бывают разные. Можно не попасть в выбранный и желанный ВУЗ, а остальные учебные заведения кажутся неподходящими по самым разным признакам. Такая жизненная «подножка» может выбить из седла любого человека. Однако стремление стать успешным никуда не девается.

Причиной отсутствия диплома может стать и тот факт, что Вам не удалось занять бюджетное место. К сожалению, стоимость обучения, особенно в престижном ВУЗе, очень высока, и цены постоянно ползут вверх. В наши дни платить за обучение своих детей могут далеко не все семьи. Так что и финансовый вопрос может стать причиной отсутствия документов об образовании.

Препятствием для получения высшего образования может стать и то, что выбранный по специальности ВУЗ находится в другом городе, возможно, достаточно далеко от дома. Воспрепятствовать учебе там могут родители, не желающие отпускать от себя своего ребенка, страхи, которые может испытывать только что закончивший школу молодой человек перед неизвестным будущим или все то же отсутствие необходимых средств.

Как можно заметить, причин не получить нужный диплом существует огромное множество. Однако факт остается фактом – без диплома рассчитывать на хорошо оплачиваемую и престижную работу напрасный труд. В этот момент приходит осознание того, что необходимо как-то решать этот вопрос и выходить из сложившейся ситуации. Тот, у кого есть время, силы и деньги, решает поступить-таки в университет и получить диплом официальным путем. У всех остальных есть два варианта – ничего не менять в своей жизни и остаться прозябать на задворках судьбы, и второй, более радикальный и смелый – купить диплом специалиста , бакалавра или магистра . Можно также приобрести любой документ в Москве

Однако тем людям, кто хочет устроиться в жизни, необходим документ, который не будет ничем отличаться от подлинного документа. Именно поэтому необходимо уделить максимум внимания выбору той компании, которой Вы поручите создание своего диплома. Отнеситесь к своему выбору с максимальной ответственностью, в этом случае у Вас появится прекрасный шанс удачно изменить течение своей жизни.

В этом случае происхождение Вашего диплома никого и никогда больше не заинтересует – Вас будут оценивать исключительно как личность и работника.

Приобрести диплом в России очень легко!

Наша компания успешно выполняет заказы по выполнению разнообразных документов – купить аттестат за 11 классов , заказать диплом колледжа или приобрести диплом ПТУ и многого другого. Также у нас на сайте можно купить свидетельство о браке и разводе , заказать свидетельство о рождении и смерти . Мы выполняем работу за короткие сроки, беремся за создание документов по срочному заказу.

Мы гарантируем, что, заказав у нас любые документы, Вы получите их в нужный срок, а сами бумаги будут отличного качества. Наши документы ничем не отличаются от оригиналов, так как мы используем только настоящие бланки ГОЗНАК. Это тот же тип документов, которые получает обычный выпускник ВУЗа. Их полная идентичность гарантирует Ваше спокойствие и возможность поступления на любую работу без малейших проблем.

Для оформления заказа Вам необходимо лишь четко определиться со своими желаниями, выбрав нужный тип ВУЗа, специальность или профессию, а также указав правильный год окончания высшего учебного заведения. Это поможет подтвердить Ваш рассказ об учебе, если Вас спросят о получении диплома.

Наша компания давно и успешно работает над созданием дипломов, поэтому прекрасно знает, как нужно оформлять документы разных лет выпуска. Все наши дипломы в мельчайших деталях соответствуют аналогичным оригиналам документов. Конфиденциальность Вашего заказа – для нас закон, который мы никогда не нарушаем.

Мы быстро выполним заказ и столь же быстро доставим его Вам в руки. Для этого мы пользуемся услугами курьеров (при доставке по городу) или транспортных фирм, которые перевозят наши документы по всей стране.

Мы уверены, что купленный у нас диплом станет лучшим помощником в Вашей будущей карьере.

  • Экономия времени на многолетнее обучение.
  • Возможность приобретения любого диплома о высшем образовании дистанционно, даже параллельно с обучением в другом ВУЗу. Можно иметь столько документов, сколько пожелаете.
  • Шанс указать в “Приложении” желаемые оценки.
  • Экономия денек на покупке, тогда как официальное получение диплома с проводкой в Санк-Петербурге стоит намного дороже готового документа.
  • Официальное доказательство обучения в высшем учебном заведении по необходимой вам специальности.
  • Наличие высшего образования в СПб откроет все дороги для быстрого продвижения по карьерной лестнице.

Как заказать диплом?

1. Заполните заявку на сайте

2. Менеджер связывается с Вами для уточнения деталей

3. Изготавливаем макет для утверждения

4. Полная готовность документа. Снимаем фото и видео для подтверждения.

5. Доставка документа и полная орлата за него

Те же проблемы с деньгами могут стать поводом к тому, что вчерашний школьник вместо университета идет на стройку работать. Если семейные обстоятельства внезапно меняются, например, уходит из жизни кормилец, платить за обучение будет нечем, да и жить семье на что-то нужно.

Бывает и так, что все идет благополучно, удается успешно поступить в ВУЗ и с обучением все в порядке, но случается любовь, образуется семья и на учебу элементарно не хватает ни сил, ни времени. К тому же необходимо намного больше денег, особенно если в семье появляется ребенок. Платить за обучение и содержать семью чрезвычайно накладно и приходится жертвовать дипломом.

Поделиться: