Расчет подъемной силы крыла самолета. Как возникает подъемная сила крыла самолета

В каждом авиационном конструкторском бюро существует байка о высказывании главного конструктора. Меняется только автор высказывания. А звучит это так: «Я занимаюсь самолетами всю свою жизнь, но до сих пор не понимаю, как эта железяка летает!». Действительно, ведь первый закон Ньютона пока не отменен, а самолет явно тяжелее воздуха. Следует разобраться, какая сила не дает упасть многотонной машине на землю.

Способы передвижения по воздуху

Существует три способа передвижения:

  1. Аэростатический, когда отрыв от земли осуществляется при помощи тела, удельный вес которого ниже плотности атмосферного воздуха. Это воздушные шары, дирижабли, зонды и прочие подобные конструкции.
  2. Реактивный, представляющий собой грубую силу реактивной струи от сгораемого топлива, позволяющую преодолеть силу земного притяжения.
  3. И, наконец, аэродинамический способ создания подъемной силы, когда атмосфера Земли используется в качестве поддерживающей субстанции для аппаратов тяжелее воздуха. Самолеты, вертолеты, автожиры, планеры и, кстати, птицы передвигаются, используя именно этот способ.

Аэродинамические силы

На самолет при движении по воздуху воздействуют четыре основные разнонаправленные силы. Условно вектора этих сил направлены вперед, назад, вниз и вверх. То есть почти лебедь, рак и щука. Сила, толкающая самолет вперед, образуется за счет двигателя, назад – это естественная сила сопротивления воздуха и вниз – земное притяжение. Ну, а не дает самолету упасть - подъемная сила, образуемая воздушным потоком за счет обтекания крыла.

Стандартная атмосфера

Состояние воздуха, его температура и давление могут существенно различаться на разных участках земной поверхности. Соответственно, будут различаться и все характеристики летательных аппаратов при полете в том или ином месте. Поэтому для удобства и приведения всех характеристик и расчетов к единому знаменателю договорились определить так называемую стандартную атмосферу со следующими основными параметрами: давление 760 мм ртутного столба над уровне моря, плотность воздуха 1,188 кг на кубический метр, скорость звука 340,17 метра в секунду, температура +15 ℃. С увеличением высоты над уровнем моря эти параметры изменяются. Существуют специальные таблицы, раскрывающие значения параметров для разных высот. Все аэродинамические расчеты, а также определение летно-технических характеристик летательных аппаратов осуществляются с использованием этих показателей.

Простейший принцип создания подъемной силы

Если в набегающий поток воздуха поместить плоский предмет, например, высунув ладонь руки из окна движущегося автомобиля, можно ощутить эту силу, что называется, «на пальцах». При повороте ладони на небольшой угол относительно воздушного потока сразу чувствуется, что помимо сопротивления воздуха, появилась еще одна сила, тянущая вверх или вниз в зависимости от направления угла поворота. Угол между плоскостью тела (в данном случае – ладони) и направлением движения воздушного потока называется углом атаки. Управляя углом атаки, можно управлять и подъемной силой. Можно легко заметить, что с увеличением угла атаки сила, толкающая ладонь вверх, будет расти, но до определенного момента. А при достижении угла, близкого к 70-90 градусам, вообще исчезнет.

Крыло самолета

Основной несущей поверхностью, создающей подъемную силу, является крыло самолета. Профиль крыла, как правило, имеет изогнутую каплеобразную форму, как показано на рисунке.

При обтекании крыла воздушным потоком скорость воздуха, проходящего вдоль верхней части крыла, превышает скорость нижнего потока. При этом статическое давление воздуха вверху становится ниже, чем под крылом. Разница давлений и толкает крыло вверх, создавая подъемную силу. Поэтому для обеспечения разницы давлений все профили крыла делаются несимметричными. Для крыла с симметричным профилем при нулевом угле атаки подъемная сила в горизонтальном полете равна нулю. При таком крыле единственным способом ее создания является изменение угла атаки. Существует еще одна составляющая подъемной силы - индуктивная. Она образуется из-за скоса потока воздуха искривленной нижней поверхностью крыла вниз, что естественным образом приводит к возникновению обратной силы, направленной вверх и воздействующей на крыло.

Расчет

Формула расчета подъемной силы крыла самолета выглядит следующим образом:

  • Cy - коэффициент подъемной силы.
  • S - площадь крыла.
  • V - скорость набегающего потока.
  • P - плотность воздуха.

Если с плотностью воздуха, площадью крыла и скоростью все понятно, то коэффициент подъемной силы - величина, получаемая экспериментальным способом и не являющаяся константой. Она меняется в зависимости от профиля крыла, его удлинения, угла атаки и прочих величин. Как видно, зависимости в основном линейные, за исключением скорости.

Этот загадочный коэффициент

Коэффициент подъемной силы крыла – величина неоднозначная. Сложные многоступенчатые расчеты все равно проверяются экспериментальным способом. Обычно это делается в аэродинамической трубе. Для каждого профиля крыла и для каждого угла атаки его значение будет другим. А поскольку крыло само по себе не летает, а находится в составе самолета, такие испытания проводятся на соответствующих уменьшенных копиях моделей летательных аппаратов. Реже испытываются отдельно крылья. По результатам многочисленных замеров каждого конкретного крыла можно построить зависимости коэффициента от угла атаки, а также различные графики, отражающие зависимость подъемной силы от скорости и профиля того или иного крыла, а также от выпущенной механизации крыла. Образец графика приведен ниже.

По сути, этот коэффициент характеризует способность крыла преобразовать напор набегающего воздуха в подъемную силу. Обычное его значение от 0 до 2. Рекорд – 6. Пока еще человеку очень далеко до природного совершенства. Например, этот коэффициент для орла, когда он поднимается от земли с пойманным сусликом, достигает значения 14. Из приведенного графика очевидно, что увеличение угла атаки вызывает увеличение подъемной силы до определенных значений угла. После чего эффект теряется и даже идет в обратную сторону.

Срыв потока

Как говорят, все хорошо в меру. Каждое крыло имеет свой предел в отношении угла атаки. Так называемый закритический угол атаки приводит к срыву потока на верхней поверхности крыла, лишая его подъемной силы. Срыв происходит неравномерно по всей площади крыла и сопровождается соответствующими, крайне неприятными явлениями типа тряски и потери управляемости. Как ни странно, это явление мало зависит от скорости, хотя она также влияет, но главная причина возникновения срыва потока – это интенсивное маневрирование, сопровождаемое закритическими углами атаки. Именно из-за этого произошла единственная катастрофа самолета Ил-86, когда летчик, желая «покрасоваться» на пустом самолете без пассажиров, резко стал набирать высоту, что окончилось трагически.

Сопротивление

Рука об руку с подъемной силой идет сила сопротивления, препятствующая движению самолета вперед. Она состоит из трех элементов. Это сила трения, возникающая из-за воздействия воздуха на летательный аппарат, сила, возникающая из-за разницы давлений в областях перед крылом и за крылом и индуктивная составляющая, рассмотренная выше, поскольку вектор ее действия направлен не только вверх, способствуя увеличению подъемной силы, но и назад, являясь союзником сопротивления. Кроме этого, одной из составляющих индуктивного сопротивления являются силы, возникающее по причине перетекания воздуха через торцы крыла, вызывающее вихревые потоки, увеличивающие скос направления движения воздуха. Формула аэродинамического сопротивления абсолютно идентична формуле подъемной силы, за исключением коэффициента Су. Он меняется на коэффициент Сх и также определяется экспериментально. Его значение редко превышает одну десятую долю единицы.

Аэродинамическое качество

Отношение подъемной силы к силе сопротивления называется аэродинамическим качеством. Здесь нужно учитывать одну особенность. Поскольку формулы подъемной силы и силы сопротивления, за исключением коэффициентов, одинаковы, можно принять, что аэродинамическое качество летательного аппарата определяется отношением коэффициентов Су и Сх. График этого соотношения для определенных углов атаки получил название поляры крыла. Образец такого графика приведен ниже.

Современные самолеты имеют значение аэродинамического качества в районе 17-21, а планеры – до 50. Это означает, что на самолетах подъемная сила крыла на оптимальных режимах в 17-21 раз превышает силу сопротивления. По сравнению с самолетом братьев Райт, с оценкой этого значения равным 6,5, прогресс в конструировании очевиден, но до орла с несчастным сусликом в лапах все равно еще далеко.

Режимы полета

Различные режимы полета требуют разное аэродинамическое качество. При крейсерском горизонтальном полете скорость самолета достаточно высока, и коэффициент подъемной силы, пропорциональный квадрату скорости, находится на больших значениях. Здесь главное – минимизация сопротивления. При взлете и особенно посадке коэффициент подъемной силы играет решающее значение. Скорость самолета невелика, но требуется его устойчивое положение в воздухе. Идеальным решением этой проблемы было бы создание так называемого адаптивного крыла, меняющего свою кривизну и даже площадь в зависимости от условий полета приблизительно так, как это делают птицы. Пока это у конструкторов не получилось, изменение коэффициента подъемной силы достигается применением механизации крыла, увеличивающей как площадь, так и кривизну профиля, что, повышая сопротивление, значительно увеличивает подъемную силу. Для истребительной авиации применялось изменение стреловидности крыла. Нововведение позволяло уменьшить сопротивление на высоких скоростях и увеличивать подъемную силу на малых скоростях. Однако данная конструкция оказалась ненадежной, и в последнее время самолеты фронтовой авиации изготавливают с фиксированным крылом. Еще одним способом увеличения подъемной силы крыла самолета является дополнительный обдув крыла потоком от двигателей. Это реализовано на военно-транспортных самолетах Ан-70 и А-400М, которые благодаря этому свойству отличаются укороченными дистанциями для взлета и посадки.

Всем известно, что крыло создает подъемную силу, только тогда, когда оно движется относительно воздуха. Т.е. характер обтекания воздухом верхней и нижней поверхностей крыла непосредственно создает подъемную силу. Как это происходит?

Рассмотрим профиль крыла в потоке воздуха:

Здесь линии течения элементарных струек воздуха обозначены тонкими линиями. Профиль к линиям течения находится под углом атаки ? - это угол между хордой профиля и невозмущенными линиями течения. Периметр верхней части крыла больше, чем нижней. Из-за этого, исходя из соображений неразрывности, скорость потока у верхней части кромки больше, чем у нижней. Тогда получается, что над крылом давление меньше, чем под ним. Явление уменьшения давления при увеличении скорости потока было давно исследовано и описано Даниилом Бернулли в 1738. Исходя из итога его работы, а именно уравнения Бернулли, данный факт становиться достаточно очевидным:

где p -- давление газа в точке; ? -- плотность газа; v -- скорость течения газа; g -- ускорение свободного падения; h -- высота относительно начала координат; ? -- адиабатическая постоянная.

Отсюда получается, что в разных точках профиля воздух давит на крыло с разной силой. Разницу между местным давлением у поверхности профиля и давлением воздуха в невозмущенном потоке можно представить в виде стрелочек, перпендикулярных контуру профиля, так что направление и длина стрелочек пропорциональна этой разнице. Тогда картина распределения давления по профилю будет выглядеть так:


Здесь хорошо видно, что на нижней образующей профиля имеется избыточное давление - подпор воздуха. На верхней же, - наоборот, разряжение. Причем оно больше там, где выше скорость обтекания. Примечательно здесь то, что величина разряжения на верхней поверхности в несколько раз превышает подпор на нижней. Векторная сумма всех этих стрелочек и создает аэродинамическую силу R, с которой воздух действует на движущееся крыло:


Разложив эту силу на вертикальную Yи горизонтальную X компоненты, мы получим подъемную силу крыла и силу его лобового сопротивления . Из картины распределения давления видно, что большая доля подъемной силы образуется не из подпора на нижней образующей профиля, а из разряжения на верхней.

Точка приложения силы R зависит от характера распределения давления по поверхности профиля. При изменении угла атаки, распределение давления тоже будет изменяться. Вместе с ним будет меняться и векторная сумма всех сил по абсолютной величине, направлению и точке приложения. Кстати, последнюю называют центром давления . С ним тесно связано понятие фокуса профиля. У симметричных профилей эти точки совпадают. У несимметричных положение центра давления на хорде при изменении угла атаки меняется, что очень затрудняет расчеты. Чтобы их упростить, было введено понятие фокуса. При этом равнодействующую аэродинамических сил разделили не на две компоненты, а на три - к подъемной силе и силе лобового сопротивления добавился еще момент крыла. Такой, вроде бы нелогичный прием позволил, поместив точку приложения подъемной силы в фокусе профиля, зафиксировать его положение и сделать его независящим от угла атаки. Прием удобный, только не надо забывать о появившемся при этом моменте крыла.

Разряжение на верхней части профиля можно не только измерить приборами, но и при определенных условиях увидеть собственными глазами. Как известно, при резком расширении воздуха, содержащаяся в нем влага может мгновенно конденсироваться в капельки воды. Кто бывал на авиашоу, мог видеть, как во время резкого маневрирования самолета, с верхней поверхности крыла срываются струйки белой пелены. Это и есть водяной пар, сконденсировавшийся при разряжении в мелкие капельки воды, которые очень быстро снова испаряются и становятся невидимыми.

Подъемную силу a можно рассматривать как реакцию воздуха, возникающую при поступательном движении крыла. Поэтому она всегда перпендикулярна направлению вектора скорости невозмущенного набегающего потока (см. рис.3.14-1).

а)

Рис.3.14-1 Подъемная сила крыла

Подъемная сила может быть положительной, если она направлена в сторону положительного направления вертикальной оси (рис.3.14-1,б), и отрицательной, если она направлена в противоположную сторону (рис.3.14-1,в). Это возможно на отрицательном угле атаки, например, в перевернутом полете.

Причиной возникновения подъемной силы является разность давления воздуха на верхней и нижней поверхностях крыла (рис.3.14-1,а).

Симметричные профили при нулевом угле атаки не создают подъемной силы. У несимметричных профилей подъемная сила может быть равна нулю только при некотором отрицательном угле атаки .

Выше была приведена формула подъемной силы: .

Формула показывает, что подъемная сила зависит:

От коэффициента подъемной силы C Y ,

Плотности воздуха ρ ,

Скорости полета,

Площади крыла.

Для более точного расчета подъемной силы крыла используется “вихревая теория” крыла. Такая теория была разработана Н.Е. Жуковским в 1906 г. Она дает возможность найти теоретическим путем наиболее выгодные формы профиля и крыла в плане.

Как видно из формулы подъемной силы, при неизменных и S подъемная сила пропорциональна квадрату скорости потока. Если при этих же условиях скорость потока будет постоянной, то подъемная сила крыла зависит только от угла атаки и соответствующей ему величины коэффициента .

При изменении угла атаки α будет изменятся только коэффициент подъемной силы .

Зависимость коэффициента подъемной силы от угла атаки . Зависимость коэффициента подъемной силы C Y от угла атаки изображается графиком функции =ƒ(α) (рис.3.15).

Перед построением графика проводится продувка модели крыла в аэродинамической трубе. Для этого крыло закрепляется в аэродинамической трубе на аэродинамических весах и устанавливается постоянная скорость потока в рабочей части трубы (см.рис.2.8).

Рис. 3.15. Зависимость коэффициента от угла атаки

Затем коэффициенты C Y на соответствующих углах атаки рассчитываются по формуле: C Y = ,

где Y -подъемная сила модели крыла;

q -скоростной напор потока в аэродинамической трубе;

S -площадь крыла модели.

Анализ графика показывает:

На малых углах атаки сохраняется безотрывное обтекание крыла, поэтому зависимость =ƒ(α) прямолинейная, имеет постоянный угол наклона . Это означает, что коэффициент C Y увеличивается пропорционально увеличению угла атаки α.

На больших углах атаки усиливается диффузорный эффект на верхней поверхности крыла. Происходит торможение потока, давление понижается медленнее, начинается более резкое повышение давления вдоль профиля крыла. Это вызывает отрыв пограничного слоя от поверхности крыла (см.рис.2.4).

Срыв потока начинается на верхней поверхности крыла – сначала местный, а затем общий. Линейная зависимость =ƒ(α) нарушается, коэффициент увеличивается медленнее, и после достижения максимума ( max) начинает уменьшаться.

Эх! Взлететь бы!..

У меня дома есть классный рыжий кот. Он «в меру упитан», как и положено уютному домашнему коту и, хотя при этом носится, как электровеник, обладает не совсем кошачьим свойством: побаивается высоты. Летающим котом по этой причине ему увы не быть, но в воздух иногда подняться видимо хочется, хотя бы для того, чтобы запрыгнуть на сервант. Однако избыточный вес этому, к сожалению, не способствует, потому приходится иногда помогать бедному животному, 🙂 то есть поднимать его руками и сажать туда, куда так рвется его душа.

Ну и чего же общего, спросите вы, имеют кот и самолет? Да, вобщем, ничего, за исключением одной очень важной вещи. Они оба имеют вес, который тянет их к земле. И, чтобы подняться кому на сервант, а кому повыше, нужна сила, которая этот вес преодолеет. Для моего семикилограмового кота – это сила моих рук, а вот для многотонной «железной птицы» это всем известная . Откуда же она берется? Все, вобщем, достаточно несложно:-)…

Начнем с «простого начала»:-). Главную роль в этом деле играет крыло самолета (именно крыло, состоящее из двух консолей, а не крылья, в продолжение моей другой ). Для простоты рассмотрим классический аэродинамический .

Аэродинамическая подъемная сила

Воздух, обтекая крыло самолета, разделяется на два потока: над крылом и под ним. Нижний поток протекает себе как ни в чем не бывало, а верхний сужается. Ведь профиль крыла выпуклый сверху! И теперь для того, чтобы в верхнем потоке проходило то же количество воздуха и за такое же время, как и в нижнем, ему нужно двигаться быстрее, ведь сам поток стал уже. Далее вступает в силу закон Бернулли: чем выше скорость потока, тем давление в нем ниже и, соответственно, наоборот. Этот закон очень просто иллюстрируется. Если взять не слишком узкий горизонтальный шланг (рукав) из тонкой прозрачной резины и влить в него воды под небольшим давлением. Что вы увидите? Да ничего особенного, вода просто быстро выльется через другой конец. А вот если на этом другом конце окажется наполовину закрытый кран, то вы сразу увидите, что вода выливается, но медленно и стенки рукава раздулись, то есть скорость потока уменьшилась и давление возросло.

Итак… При движении в воздушном потоке над крылом давление меньше, чем под ним. Из-за этой разницы возникает . Она выталкивает крыло самолета и, соответственно, сам самолет вверх. Чем скорость выше, тем подъемная сила больше. А если она равна весу, то самолет летит горизонтально. Ну а скорость зависит от работы двигателя самолета. Между прочим, падение давления над верхней частью крыла можно увидеть воочию.

Конденсация водяного пара над верхней поверхностью крыла в результате резкого падения давления

У резко маневрирующего самолета (обычно это бывает на аэрошоу) над верхней поверхностью крыла возникает что-то вроде струй белой пелены. Это из-за быстрого падения давления конденсируется водяной пар, находящийся в воздухе.

Кстати, не могу удержаться, чтобы не вспомнить еще один простейший, но очень точно иллюстрирующий теорию этого вопроса, школьный опыт. Если взять небольшой узкий лист бумаги за его короткую сторону и, поднеся его ко рту, подуть над листком горизонтально, то провисший было листок сразу резво поднимется. В этом виновата все та же подъемная сила. Мы дуем над листком – поток ускоряется, значит давление в нем падает, а под листком оно осталось прежним. Оно и поднимает листок в горизонтальное положение. Процесс, принципиально похожий на работу профиля.

Ну, вот, вроде бы и все? Можно лететь? Несмотря на вполне логичное приведенное выше объяснение (на мой взгляд:-)), я бы сказал, что вряд ли:-). Надо понимать, что описанный случай носит все-таки частный характер. Ведь профиль может быть и симметричным, тогда не будет такого распределения давления и разрежения над и под ним.

Кроме того такой профиль может располагаться и под углом к потоку (что чаще всего и бывает). И вот этот самый угол, который называется углом атаки будет играть большую роль в образовании подъемной силы крыла, которая и сама будет носить иной характер. Об этом в . И это будет «простое продолжение»:-).

На самом-то деле, конечно, полная теория этого вопроса значительно сложнее и одним законом Бернулли, объясненным на пальцах, здесь не обойдешься. Это уже область физики и аэродинамики, ведь и сама в нашем рассмотренном случае случае – это . В скором будущем мы немного коснемся этой области с ее терминами и понятиями, но более глубокое изучение требует, так сказать, общения с фундаментальными науками.

Постскриптум через год .

20.11.12 Исполнился уже почти год моим сайтописательским увлечениям. И, вот, потребовалось внести некоторое пояснение в эту, одну из самых первых моих статей. Похоже, что люди, прочитавшие ее, этим и ограничиваются. Такой подход неверен, потому что вслед за ней надо обязательно прочитать следующую статью этой же рубрики , написанную практически сразу за первой. Статья «с котом» 🙂 — это упрощенный вариант, и об этом я упоминал (здесь угол атаки равен нулю), это что-то типа введения в аэродинамику (тоже, кстати, максимально упрощенную:-)), поэтому и стиль изложения такой вольный:-). Однако, для правильного понимания вопроса она без второй существовать не может.

Я, по тогдашней неопытности несколько невнятно об этом сказал, и, главное, не поставил ссылку на «простое продолжение»… Ставлю сейчас. Прошу прощения у читателей не слишком сведущих (опытные итак все знают без меня:-))… Буду рад видеть вас у себя на сайте:-)…

Фотографии кликабельны.

УПРАВЛЕНИЕ ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ ИЧАЛКОВСКОГО МУНИЦИПАЛЬНОГО РАЙОНА

Конкурс по физике

«ФИЗИКА ВОКРУГ НАС»

ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ

ПОДЪЕМНАЯ СИЛА КРЫЛА САМОЛЕТА

Яманов Виктор

МОУ «Тархановская СОШ», с. Тарханово, 9 класс

Руководитель:

Аверкин Иван Андреевич,

учитель физики и математики

МОУ «Тархановская СОШ»

Ичалковского муниципального района Республики Мордовия

2011

Введение............................................................................

Подъемная сила крыла самолета.

Физический эксперимент

Аэродинамика крыла самолета

Заключение

Литература. .................................................

Введение

Почему могут летать птицы несмотря на то что они тяжелее воздуха? Какие силы поднимают огромный пассажирский самолет, который может летать быстрее, выше и дальше любой птицы, ведь крылья его неподвижны? Почему планер, не имеющий мотора, может парить в воздухе? На все эти и многие другие вопросы дает ответ аэродинамика - наука, изучающая законы взаимодействия воздуха с движущимися в нем телами.

В развитии аэродинамики у нас в стране выдающуюся роль сыграл профессор Николай Егорович Жуковский (1847 -1921) - «отец русской авиации». Заслуга Жуковского состоит в том, что он первый объяснил образование подъемной силы крыла и сформулировал теорему для вычисления этой силы. Им была решена и другая проблема теории полета - объяснена сила тяги воздушного винта.

Жуковский не только открыл законы, лежащие в основе теории полета, но и подготовил почву для бурного развития авиации в нашей стране. Он связал теоретическую аэродинамику с практикой авиации, дал возможность инженерам использовать достижения ученых-теоретиков. Под научным руководством Жуковского были организованы Аэрогидродинамический институт (сейчас ЦАГИ), ставший крупнейшим центром авиационной науки, и Военно-воздушная академия (сейчас ВВИА им. проф. Н. Е. Жуковского), где подготавливают высококвалифицированные инженерные кадры для авиации.

Основным приспособлением, служащим для изучения законов движения тел в воздухе, является аэродинамическая труба. Простейшая аэродинамическая труба представляет собой профилированный канал. В одном конце трубы установлен мощный вентилятор, приводимый во вращение электродвигателем. Когда вентилятор начинает работать, в канале трубы образуется воздушный поток. В современных аэродинамических трубах можно получать различные скорости воздушного потока вплоть до сверхзвуковых. В их каналах можно помещать для исследования не только модели, но и реальные самолеты .

Важнейшими законами аэродинамики являются закон сохранения массы (уравнение неразрывности) и закон сохранения энергии (уравнение Бернулли).

Рассмотрим природу возникновения подъемной силы. Опыты, проведенные в аэродинамических лабораториях, позволили установить, что при набегании на тело воздушного потока частицы воздуха обтекают тело. Картину обтекания тела воздухом легко наблюдать, если поместить тело в аэродинамической трубе в подкрашенном потоке воздуха, кроме того, ее можно сфотографировать. Полученный снимок называют спектром обтекания.

Упрощенная схема спектра обтекания плоской пластинки, поставленной под углом 90° к направлению потока, изображена на рисунке.

Почему и как возникает подъемная сила

Простейшими летательными аппаратами яв­ляются бумажные змеи, которые запускают уже несколько тыся­челетий и для забавы, и для научных исследований. Изобре­татель радио А. С. Попов с помощью бумажного змея поднимал проволоку (антенну) для увеличения дальности радиопередачи.

Змей представляет собой плоскую пластину, расположенную под углом α к направлению потока воздуха. Этот угол получил название угла атаки. При взаимодействии этой пластины с потоком возникает подъемная сила F n , являющая­ся вертикальной составляющей силы R, действующей со стороны потока на пластину.

Механизм возникновения силы R двоякий. С одной стороны, это сила реакции, возникающая при отражении потока воз­духа и равная изменению его импульса в единицу времени

С другой стороны, при обтекании пластины за ней образуются вихри, понижающие, как это следует из уравнения Бернулли, давление над пластиной.

Горизонтальная составляющая силы R является силой со­противления давления F с . График зависимости подъемной силы и силы сопротивления от угла атаки изображен на рисунке, из которого видно, что максимальная подъемная сила дости­гается при угле атаки, равном 45°.

Подъемная сила крыла самолета

Уравнение Бернулли позволяет рассчи­тать подъемную силу крыла самолета при его полете в воздухе. Если скорость потока воздуха над крылом v 1 ока­жется больше скорости потока под кры­лом v 2 , то согласно уравнению Бернулли возникает перепад давлений:

где р 2 - давление под крылом, р 1 -давление над крылом. Подъемную силу можно рассчитать по формуле

где S - площадь поверхности крыла, v 1 - скорость пото­ка воздуха над крылом, v 2 - скорость потока воздуха под крылом.

Возникновение подъемной силы при существовании различия в скоростях движения потока воздуха, обтекающего тело, можно продемонстрировать следующим опытом.

Закрепим модель крыла в аэродинамических весах и будем продувать воздух с помощью аэродинамической трубы или пы­лесоса. Чтобы найти подъемную силу, можно с по­мощью микроманометра измерить статическое давление воздуха над крылом р 1 и под крылом р 2 . Рассчитанное по формуле F n = =(p 2 - p 1 ) S значение подъемной силы совпадает с показания­ми шкалы аэродинамических весов.

Физический эксперимент

Приборы и оборудование для эксперимента:

    Вентилятор бытовой

    Микроманометр

    Макет крыла

    Штатив

    Лист бумаги

Вычисления

Р 1 = -2 мм вод. ст.

Р 2 = 1 мм вод. ст.

∆Р = Р 2 – Р 1 = 1- (-2) = 3 мм вод. ст.

∆Р = ρ gh = 1000 ∙ 10 ∙ 3 10 -3 = 30 Па

F п = Р 2 ∙ S – Р 1 ∙ S = S ∙ ∆Р = 18 ∙ 26 ∙ 10 -4 ∙ 30 = 468 ∙ 30 ∙ 10 -4 ≈

≈ 1,4 Н

Р = F Т = 0,5 Н.

Аэродинамика крыла самолета

При обтекании воздушным потоком крыла самолета верхняя и нижняя части потока воздуха из-за несимметричности формы крыла проходят различные пути и встречаются у задней кромки крыла с различными скоростями.

Это приводит к возникно­ вению вихря, вращение которого происходит против часовой стрелки.

Вихрь обладает определенным моментом импульса. Но по­скольку в замкнутой системе момент импульса должен оставать­ся неизменным, вокруг крыла возникает циркуляция воздуха, направленная почасовой стрелке.

Обозначив скорость потока воздуха относительно крыла че­ рез и, а скорость циркуляционного потока через и, преобразуем выражение для подъемной силы крыла самолета:

где v 1 = u + v , u 2 = u - v . Тогда

Такую формулу в 1905 г. впервые получил Николай Егоро­вич Жуковский

Н. Е. Жуковский установил профиль поперечного сечения крыла с максимальной подъемной силой и минимальной силой лобового сопротивления. Он создал также вихревую теорию винта самолета, нашел оптимальную форму лопасти винта и рассчитал силу тяги пропеллера.

Поперечное сечение крыла плоскостью, параллельной плоскости его симметрии называется «профилем». Типовой профиль крыла выглядит так:

Максимальное расстояние между крайними точками профиля – b , называется хордой профиля. Наибольшая высота профиля – c , называется толщиной профиля.

Подъемная сила крыла возникает не только за счет угла атаки, но также и благодаря тому, что поперечное сечение крыла представляет собой чаще всего несимметричный профиль с более выпуклой верхней частью.

Крыло самолета или планера, перемещаясь, рассекает воздух. Одна часть струек встречного потока воздуха пойдет под крылом, другая - над ним.

У крыла верхняя часть более выпуклая, чем нижняя, следовательно, верхним струйкам придется пройти больший путь, чем нижним. Однако количество воздуха, набегающего на крыло и стекающего с него, одинаково. Значит, верхние струйки, чтобы не отстать от нижних, должны двигаться быстрее.

Линии течения элементарных струек воздуха обозначены тонкими линиями. Профиль к линиям течения находится под углом атаки а – это угол между хордой профиля и невозмущенными линиями течения. Там, где линии течения сближаются, скорость потока возрастает, а абсолютное давление падает. И наоборот, где они становятся реже, скорость течения уменьшается, а давление возрастает. Отсюда получается, что в разных точках профиля воздух давит на крыло с разной силой.

В соответствии с уравнением Бернулли, если скорость воздушного потока под крылом меньше, чем над крылом, то давление под крылом, наоборот, будет больше, чем над ним. Эта разность давлений и создает аэродинамическую силу R,

На рисунке дано схематическое изображение спектра обтекания пластинки, поставленной под острым углом к потоку. Под пластинкой давление повышается, а над ней вследствие срыва струй получается разрежение воздуха, т. е. давление понижается. Благодаря образующейся разности давлений и возникает аэродинамическая сила. Она направлена в сторону меньшего давления, т. е. назад и вверх. Отклонение аэродинамической силы от вертикали зависит от угла, под которым пластинка поставлена к потоку. Этот угол получил название угла атаки (его принято обозначать греческой буквой а - альфа).

Заключение

Свойство плоской пластинки создавать подъемную силу, если на нее набегает под острым углом воздух (или вода), известно уже с давних времен. Примером тому служит воздушный змей и руль корабля, время изобретения которых теряется в веках.

Чем больше скорость набегающего потока, тем больше и подъемная сила и сила лобового сопротивления. Эти силы зависят, кроме того, и от формы профиля крыла, и от угла, под которым поток набегает на крыло (угол атаки), а также от плотности набегающего потока: чем больше плотность, тем больше и эти силы. Профиль крыла выбирают так, чтобы оно давало возможно большую подъемную силу при возможно меньшем лобовом сопротивлении.

Теперь мы можем объяснить, как летает самолет. Воздушный винт самолета, вращаемый двигателем, или реакция струи реактивного двигателя, сообщает самолету такую скорость, что подъемная сила крыла достигает веса самолета и даже превосходит его. Тогда самолет взлетает. При равномерном прямолинейном полете сумма всех сил, действующих на самолет, равна нулю, как и должно быть согласно первому закону Ньютона. На рис. 1 изображены силы, действующие на самолет при горизонтальном полете с постоянной скоростью. Сила тяги двигателя f равна по модулю и противоположна по направлению силе лобового сопротивления воздуха F2 для всего самолета, а сила
Рис. 1. Силы, действующие на самолет при горизонтальном равномерном полете

тяжести Р равна по модулю и противоположна по направлению подъемной силе F1.

Самолеты, рассчитанные на полет с различной скоростью, имеют различные размеры крыльев. Медленно летящие транспортные самолеты должны иметь большую площадь крыльев, так как при малой скорости подъемная сила, приходящаяся на единицу площади крыла, невелика. Скоростные же самолеты получают достаточную подъемную силу и от крыльев малой площади. Так как подъемная сила крыла уменьшается при уменьшении плотности воздуха, то для полета на большой высоте самолет должен двигаться с большей скоростью, чем вблизи земли. Рис. 2. Судно на подводных крыльях

Подъемная сила возникает и в том случае, когда крыло движется в воде. Это дает возможность строить суда, движущиеся на подводных крыльях. Корпус таких судов во время движения выходит из воды. Это уменьшает сопротивление воды движению судна и позволяет достичь большой скорости хода. Так как плотность воды во много раз больше, чем плотность воздуха, то можно получить достаточную подъемную силу подводного крыла при сравнительно малой его площади и умеренной скорости.

Назначение самолетного винта - это придание самолету большой скорости, при которой крыло создает подъемную силу, уравновешивающую вес самолета. С этой целью винт самолета укрепляют на горизонтальной оси. Существует тип летательных аппаратов тяжелее воздуха, для которого крылья не нужны. Это - вертолеты.

Рис 3. Схема вертолета

В вертолетах ось воздушного винта расположена вертикально и винт создает тягу, направленную вверх, которая и уравновешивает вес вертолета, заменяя подъемную силу крыла. Винт вертолета создает вертикальную тягу независимо от того, движется вертолет или нет. Поэтому при работе воздушных винтов вертолет может неподвижно висеть в воздухе или подниматься по вертикали. Для горизонтального перемещения вертолета необходимо создать тягу, направленную горизонтально. Для этого не нужно устанавливать специальный винт с горизонтальной осью, а достаточно только несколько изменить наклон лопастей вертикального винта, что выполняется при помощи специального механизма во втулке винта. http://rjstech.com/aerodinamika-i-modelirovanie/osnovy-aerodinamiki/

Поделиться: