Тепловые электростанции тэс. Краткая характеристика работы тепловой электростанции

Тепловые электростанции представляют собой устройство, специализация которого основывается на вырабатывании электроэнергии. Электроэнергия производится путём преобразования и в ходе переработки тепловой энергии. теплота образуется при сгорании топливного ресурса, которым могут быть разновидности горючих ископаемых. Способность преобразовывать энергию природных ресурсов в электроэнергию делает ТЭС неотъемлемой частью жизни любого современного человека.

Маломощные тепловые электростанции широко используются в различных областях. Например, они могут обогревать и подавать электроэнергию в школы и бассейны, клиники и спортивные комплексы. Их можно использовать для создания нормальных рабочих условий во времянках и вагончиках при строительстве, в других областях народного хозяйства.

У данных электростанций масса плюсов и очень мало минусов. Мини теплоэлектростанции состоят из нескольких приборов и работа их полностью автоматизирована. Также ТЭС может работать на любом виде топлива , что позволяет использовать ее в любых условиях.

Самым основным плюсом в работе данной техники можно считать то, что оно позволяет не зависеть от роста цен на тепло и электроносители и иметь свою независимую мини теплоэлектростанцию. Это возможность экономить средства, выделяемые на это практически на 100%.

Возможности оборудования практически безграничны, ведь может обеспечивать, по сути, любое помещение по разряду не хуже централизованных сетей, а обойдется намного дешевле. Первоначальные затрат быстро окупятся и расходы будут минимальными лишь на топливо для ТЭЦ. Причем его тоже можно варьировать в зависимости от условий эксплуатации, выбирая более дешевый вариант.


Преимущества ТЭС

  • Сравнительно низкий ценовой показатель теплового ресурса, использующегося в ходе работы ТЭС, в сравнении с ценовыми категориями аналогичного ресурса, применяемого на атомных электростанциях.
  • Строительство ТЭС, а также доведение объекта до состояния активной эксплуатации задействует меньшее привлечение денежных средств.
  • ТЭС может территориально быть расположена в любой географической точке. Организация работы станции данного типа не потребует привязывания местонахождения станционной установки в непосредственной близости с определёнными природными ресурсами. Топливо может доставляться к станции из любого места мира с помощью автомобильного или железнодорожного видов транспорта.
  • Сравнительно небольшой масштаб ТЭС позволяет производить их установку в условиях стран, где земля является в силу малой территории ценным ресурсом, к тому же существенно снижается процент земельной площади, попавшей в зону отчуждения и вывода из нужд сельского хозяйства.
  • Стоимость топлива, вырабатываемого ТЭС, по сравнении с аналогичным дизельным, будет дешевле .
  • Вырабатываемая энергии не зависит от сезонного колебания мощности, что свойственно ГЭС.
  • Обслуживание и эксплуатационный процесс ТЭС характеризуются простотой.
  • Технологический процесс возведения ТЭС массово освоен, что даёт возможность для их быстрого строительства, существенно экономящего при этом временные ресурсы.
  • При завершении срока службы ТЭС их достаточно легко подвергнуть утилизации. Инфраструктурное подразделение ТЭС более долговечно по сравнению с основным оборудованием, представленным котлами и турбинами. Системы водоснабжения и теплоснабжения способны ещё длительный период времени после окончания срока службы сохранять свои качественные и технологические характеристики, они могут функционировать дальше после замены турбин и котлов.
  • В ходе работы происходит выделение воды и пара, что может быть задействовано для организации отопительного процесса или в иных технологических задачах.
  • Являются производителями около 80-ти % всей электроэнергии страны .
  • Одновременная выработка электроэнергии и осуществление тепловой подачи при длительном сроке эксплуатации делают ТЭС экономичными системами.

Недостатки ТЭС

  • Нарушение экологического равновесия и загрязнение атмосферы в процессе выброса в неё дыма и копоти, сернистых и азотистых соединений в большом количестве. Деятельность ТЭС способна спровоцировать явление «парникового эффекта» и прохождение кислотных дождей. Кроме того, создание и передача электроэнергии приводят к электромагнитному загрязнению окружающей среды.
  • В связи с добычей для эксплуатирования и функционирования ТЭС большого количества угля возникает нужда в шахтах, при создании которых происходит нарушение естественного природного рельефа.
  • Нарушение теплового баланса водоёмов , который происходит в процессе сброса ТЭС охлаждающей воды, что приводит к повышению температурных показателей.
  • Вместе с загрязняющими атмосферу газами ТЭС производит выброс некоторых веществ, принадлежащих к группе радиоактивных, содержание которых в большей или меньшей степени прослеживается в топливе.
  • В ходе эксплуатации ТЭС используются те природные ресурсы, естественное возобновление которых невозможно, поэтому количество этих ресурсов постепенно уменьшается.
  • Наличие сравнительно низкой экономичности.
  • ТЭС сложно справляются с необходимостью принимать участие в покрытии переменной части суточного графика электрической нагрузки.
  • Способность ТЭС работать на привозном топливе содержит в себе проблему, связанную с точной организацией процесса поставки топливных ресурсов.
  • Работа ТЭС влечёт за собой более высокие расходы по их обслуживанию по сравнению с ГЭС.

В каких случаях выбирают данное оборудование

Когда затраты на передачу или производство электроэнергии высоки и бюджет организации или частного лица не может их осилить. Если централизованные системы по подаче тепла и электричества не могут осилить дополнительно возведенные или введенные в эксплуатацию площади.

Когда количества электричества просто недостаточно для бесперебойной работы современного оборудования и приборов. Либо оно имеет низкое качество. Также нельзя забывать про экологическую составляющую оборудования, которое позволяет выделять в атмосферу вредных веществ.

Универсальность и экономичность

Электростанции могут работать на дровах или угле, газе, дизельном топливе. Обычно дизельное топливо применяется редко в виду его дороговизны и вредных выделений. Есть несколько модификаций данных установок и различают:

  1. Турбины, работающие на пару.
  2. Газовые турбины.
  3. Газопоршневые генераторы.

Выбор ТЭС зависит от необходимой мощности для потребителя. Самыми популярными считаются газопоршневые, однако, их мощность всего 80 мВт .

Абсолютные выгоды на фоне кризиса

В целом плюсов значительно больше, чем минусов , и для некоторых предприятий и учреждений приобретение мини ТЭС отличный выход из положения, особенно, если город растет, а возможностей прокладывать тепло и электро сети, нет. Либо они загружены настолько, что в любом случае подачи тепла или света будет недостаточно. Также это может стать отличным решением в загородной зоне, где вообще нет централизованной подачи тепла и электроэнергии, но жилье, тем не менее, строится. Особенно оценят возможности таких установок и рабочие, которые ремонтируют трассы и дороги, буровики, нефтяники, которые передвигаются по стране, но у них нет возможности каждый раз подключаться к централизованной подаче света и тепла.

Возможно, ТЭС пригодится военным гарнизонам, которые несут службу далеко от городков, с полным обеспечением комфортных условий. Словом данное оборудование может стать незаменимым в областях, где особенно ценится возможность получить полноценное тепло, электричество и даже холодный воздух для кондиционеров при необходимости. Небольшое оборудование можно легко транспортировать специальным транспортом и использовать по мере необходимости.

Будут выгодны данные ТЭС и предпринимателям, которые занимают площади в гаражах, складах, и не подключены к централизованному теплу, а свет используют по высоким городским тарифам. Это поможет существенно сэкономить на материальных затратах при работе и позволить не зависеть от монополистов тепла и света.

Идеальные возможности мини версии ТЭС могут соперничать разве что с крупными образцами ТЭС или гидроэлектростанциями, однако мобильность и автоматизированность небольшого оборудования перевешивает в любом случае.

Выводы

В связи с тем, что проблема энергетики актуальны для современности, встаёт вопросы об организации обеспечения населения электроэнергией, не допуская при этом существенных финансовых и временных затрат при сохранении благоприятной экологической обстановки. Одним из вариантом решения поставленной задачи становится строительство и эксплуатация ТЭС.

Пару недель назад во всех кранах Новодвинска исчезла горячая вода - здесь не нужно искать какие-то происки недругов, просто в Новодвинск пришли гидравлические испытания, процедура, необходимая для подготовки городской энергетики и коммунальных коммуникаций к новому отпительному сезону. Без горячей воды как-то сразу ощутил себя деревенским жителем - кастрюльки с кипятком на плите - помыться-побриться,- мытье посуды в холодной воде и т.д.

Вместе с тем в голове появился вопрос: а как все-таки "делается" горячая вода, и как она попадает в краны в наших квартирах?


Конечно, вся городская энергетика "запитана" на Архангельский ЦБК, точнее на ТЭС-1, куда я и направился, чтобы узнать откуда берется горячая вода и тепло в наших квартирах. Помочь в моем поиске согласился главный энергетик Архангельского ЦБК Андрей Борисович Зубок, ответивший на множество моих вопросов.

Вот, кстати, рабочий стол - главного энергетика Архангельского ЦБК - монитор, куда выводятся самые разнообразные данные, многоканальный телефон, который неоднократно звонил в ходе нашей беседы, стопка документов...

Андрей Борисович рассказал мне, как "в теории" работает ТЭС-1, главная энергетическая установка комбината и города. Сама аббревиатура ТЭС - тепло-электро станция - подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашем холодном климате.

Схема работы ТЭС-1:


Любая тепло-электростанция начинается с главного щита управления, куда стекается вся информация о процессах, происходящих в котлах, о работе турбин и т.д.

Здесь на многочисленных индикаторах и циферблатах видна работа турбин, генераторов и котлов. Отсюда управляют производственным процессом станции. А процесс этот весьма сложный = чтобы разобраться во всем, нужно не мало учиться.



Ну а рядом - находится сердце ТЭС-1 - паровые котлы. Их на ТЭС-1 восемь. Это огромные сооружения, высота которых достигает 32 метров. Именно в них и происходит главный процесс преобразования энергии, благодаря которому и появляется и электричество, и горячая вода в наших домах - выработка пара.

Но всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф. На ТЭС-1 основное топливо - это уголь, который везут сюда из Воркуты по железной дороге.

Часть его складируется, другая часть идёт по конвейерам на станцию, где сам уголь сначала измельчается до пыли и потом подаётся по специальным "пылепроводам" в топку парового котла. Для розжига котла используют мазут, а потом по мере увеличения давления и температуры переводят его на угольную пыль.


Паровой котел — это агрегат для получения пара высокого давления из непрерывно поступающей в него питательной воды. Происходит это за счет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. Весит это сооружение более 1000 тонн! Производительность котла — 200 тонн пара в час.

Внешне котел напоминает сплетение труб, вентелей и каких-то механизмов. Рядом с котлом жарко, ведь пар на выходе из котла имеет температуру в 540 градусов.

Есть на ТЭС-1 и другой котел - современный, установленный несколько лет назад котел Metso с решеткой Hybex. Управление этим энергоагрегатом выведено на отдельный пульт.

Агрегат работает по инновационной технологии — сжигание топлива в пузырьковом кипящем слое (Hybex). Для получения пара здесь сжигают кородревесное топливо (270 тыс. тонн в год) и осадок сточных вод (80 тыс. тонн в год), его привозят сюда с очистных сооружений.




Современный котел - это тоже огромное сооружение, высота которого более 30 метров.

Ил и кородревесное топливо попадают в котел по этим транспортерам.

А отсюда, уже после подготовки топливная смесь попадает непосредственно в топку котла.

В здании нового котла на ТЭС-1 есть лифт. Вот только этажей в привычном для обычного горожанина виде здесь нет - есть высота отметки обслуживания - вот и лифт движется от отметки к отметке.

На станции работает больше 700 человек. Работы хватает всем - оборудование требует обслуживания и постоянного контроля за ним со стороны персонала. Условия работы на станции непростые - высокие температуры, влажность, шум, угольная пыль.

А здесь рабочие готовят площадку под строительство нового котла - его возведение начнется уже в будущем году.

Здесь готовится вода для котла. В автоматическом режиме воду умягчают для того, чтобы снизить отрицательное воздействие на котел и лопатки турбины (уже в то время когда вода превратится в пар).


А это турбинный зал - сюда приходит пар из котлов, здесь он крутит мощные турбины (всего их пять).

Вид со стороны:

В этом зале пар работает: проходя через пароперегреватели, пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия.

Множество манометров.

А вот она - турбина, где и работает пар и "крутит" генератор. Это турбина №7 и, соответственно, генератор №7.

Восьмой генератор и восьмая турбина. Мощности генераторов разные, но в сумме они способны выдавать около 180 МВт электроэнергии - этого электричества хватает и на нужды самой станции (а это около 16%), и на нужды производств Архангельского ЦБК, и на обеспечение "сторонних потребителей" (в город уходит около 5% выработанной энергии).

Переплетение труб завораживает.

Горячая вода для отопления (сетевая) получается путем нагревания воды паром в теплообменниках (бойлерах). В сеть она закачивается вот такими насосами - их на ТЭС-1 восемь. Вода "для отопления", к слову, специально подготавливается и очищается и на выходе со станции соответствует требованиям, предъявляемым к питьевой воде. Теоретически эту воду можно пить, но все-таки пить ее не рекомендуется из-за наличия большого количества продуктов коррозии в трубах тепловых сетей .



А в этих башнях - участке химического цеха ТЭС-1, - готовится вода, которую добавляют в теплосистему, ведь часть горячей воды расходуется - ее необходимо пополнять.

Дальше нагретая вода (теплоноситель) следует по трубопроводам различного сечения, ведь ТЭС-1 отапливает не только город, но и производственные помещения комбината.

А электричество "выходит" со станции через через распределительные электрические устройства и трансформаторы и передается в энергосистему комбината и города.


Конечно, на станции есть труба - та самая "фабрика облаков". На ТЭС-1 таких труб три. Самая высокая - более 180 метров. Как оказалось труба - это действительно пустотелая конструкция, куда сходятся газоходы от различных котлов. Перед попаданием в трубу дымовые газы проходят систему очистки от золы. На новом котле это происходит в электрофильтре. Эффективная степень очистки дымовых газов составляет 99.7%. На угольных котлах очистка производится водой,- эта система менее эффективна, но все равно большая часть «выбросов» улавливается.



Сегодня на ТЭС-1 полным ходом идут ремонты: и если здание можно отремонтировать в любое время...

То производить капитальный ремонт котлов или турбин можно только летом в период пониженных нагрузок. Кстати, именно для этого и проводят "гидравлические испытания". Программное повышение нагрузки на системы теплоснабжения необходимо, во-первых, для проверки надежности коммунальных коммуникаций, а, во-вторых, энергетики имеют возможность "слить" теплоноситель из системы и заменить, например, участок трубы. Ремонт энергетического оборудования - дорогостоящее мероприятие, требующее особой квалификации и допуска от специалистов.

За пределами комбината горячая вода (она же теплоноситель) течет по трубам - три "выхода" в город обеспечивают бесперебойную работу отопительной системы города. Система замкнута, вода в ней постоянно циркулирует. В самое холодное время года - температура воды на выходе со станции составляет 110 градусов Цельсия, возвращается теплоноситель, остыв на 20-30 градусов. Летом температуру воды снижают - нормативно на выходе со станции она составляет 65 градусов Цельсия.

Кстати, отключают горячую воду и отопление не на ТЭС, а непосредственно в домах - этим занимаются управляющие компании. ТЭС "отключает" воду лишь однажды - после гидравлических испытаний, чтобы произвести ремонт. После ремонтов энергетики постепенно заполняют систему водой - в городе есть специальные механизмы для спуска воздуха из системы - совсем как в батареях в обычном жилом доме.

Конечный пункт горячей воды - тот самый кран в любой из городских квартир, вот только сейчас воды в нем нет - гидравлические испытания.

Вот так непросто "делается" то, без чего трудно представить жизнь современного горожанина - горячая вода.

Тепловая электростанция

Теплова́я электроста́нция

(ТЭС), энергетическая установка, на которой в результате сжигания органического топлива получают тепловую энергию, преобразуемую затем в электрическую. ТЭС – основной тип электрических станций, доля вырабатываемой ими электроэнергии составляет в промышленно развитых странах 70–80 % (в России в 2000 г. – ок. 67 %). Тепловая на ТЭС используется для нагрева воды и получения пара (на паротурбинных электростанциях) или для получения горячих газов (на газотурбинных). Для получения тепла органическое сжигают в котлоагрегатах ТЭС. В качестве топлива используется уголь, природный газ, мазут, горючие . На тепловых паротурбинных электростанциях (ТПЭС) получаемый в парогенераторе (котлоагрегате) пар приводит во вращение паровую турбину , соединённую с электрическим генератором. На таких электростанциях вырабатывается почти вся электроэнергия, производимая ТЭС (99 %); их кпд приближается к 40 %, единичная установленная мощность – к 3 МВт; топливом для них служат уголь, мазут, торф, сланцы, природный газ и т. д. Электростанции с теплофикационными паровыми турбинами, на которых тепло отработанного пара утилизируется и выдаётся промышленным или коммунальным потребителям, называются теплоэлектроцентралями. На них вырабатывается примерно 33 % электроэнергии, производимой ТЭС. На электростанциях с конденсационными турбинами весь отработанный пар конденсируется и в виде пароводяной смеси возвращается в котлоагрегат для повторного использования. На таких конденсационных электростанциях (КЭС) вырабатывается ок. 67 % электроэнергии, производимой на ТЭС. Официальное название таких электростанций в России – Государственная районная электрическая станция (ГРЭС).

Паровые турбины ТЭС соединяют с электрогенераторами обычно непосредственно, без промежуточных передач, образуя турбоагрегат. Кроме того, как правило, турбоагрегат объединяют с парогенератором в единый энергоблок, из них затем компонуют мощные ТПЭС.

В камерах сгорания газотурбинных тепловых электростанций сжигают газ или жидкое топливо. Получаемые продукты сгорания поступают на газовую турбину , вращающую электрогенератор. Мощность таких электростанций, как правило, составляет несколько сотен мегаватт, кпд – 26–28 %. Газотурбинные электростанции обычно сооружают в блоке с паротурбинной электростанцией для покрытия пиков электрической нагрузки. Условно к ТЭС относят также атомные электростанции (АЭС), геотермальные электростанции и электростанции с магнитогидродинамическими генераторами . Первые ТЭС, работающие на угле, появились в 1882 г. в Нью-Йорке, в 1883 г. – в Санкт-Петербурге.

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Смотреть что такое "тепловая электростанция" в других словарях:

    Тепловая электростанция - (ТЭС) - электрическая станция (комплекс оборудования, установок, аппаратуры), вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. В настоящее время среди ТЭС… … Нефтегазовая микроэнциклопедия

    тепловая электростанция - Электростанция, преобразующая химическую энергию топлива в электрическую энергию или электрическую энергию и тепло. [ГОСТ 19431 84] EN thermal power station a power station in which electricity is generated by conversion of thermal energy Note… … Справочник технического переводчика

    тепловая электростанция - Электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива … Словарь по географии

    - (ТЭС) вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основные типы ТЭС: паротурбинные (преобладают), газотурбинные и дизельные. Иногда к ТЭС условно относят… … Большой Энциклопедический словарь

    ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ - (ТЭС) предприятие для производства электрической энергии в результате преобразования энергии, выделяющейся при сжигании органического топлива. Основные части ТЭС котельная установка, паровая турбина и электрогенератор, превращающий механическую… … Большая политехническая энциклопедия

    Тепловая электростанция - ПГУ 16. Тепловая электростанция По ГОСТ 19431 84 Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

    - (ТЭС),вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. ТЭС работают на твёрдом, жидком, газообразном и смешанном топливе (угле, мазуте, природном газе, реже буром… … Географическая энциклопедия

    - (ТЭС), вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основные типы ТЭС: паротурбинные (преобладают), газотурбинные и дизельные. Иногда к ТЭС условно относят… … Энциклопедический словарь

    тепловая электростанция - šiluminė elektrinė statusas T sritis automatika atitikmenys: angl. thermal power station; thermal station vok. Wärmekraftwerk, n rus. тепловая электростанция, f pranc. centrale électrothermique, f; centrale thermoélectrique, f … Automatikos terminų žodynas

    тепловая электростанция - šiluminė elektrinė statusas T sritis fizika atitikmenys: angl. heat power plant; steam power plant vok. Wärmekraftwerk, n rus. тепловая электростанция, f; теплоэлектростанция, f pranc. centrale électrothermique, f; centrale thermique, f; usine… … Fizikos terminų žodynas

    - (ТЭС) Электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в конце 19 в. (в 1882 в Нью Йорке, 1883 в Петербурге, 1884 в… … Большая советская энциклопедия

Электроэнергию производят на электростанциях за счет использования энергии, скрытой в различных природных ресурсах. Как видно из табл. 1.2 это происходит в основном на тепловых (ТЭС) и атомных электростанциях (АЭС), работающих по тепловому циклу.

Типы тепловых электростанций

По виду генерируемой и отпускаемой энергии тепловые электростанции разделяют на два основных типа: конденсационные (КЭС), предназначенные только для производства электроэнергии, и теплофикационные, или теплоэлектроцентрали (ТЭЦ). Конденсационные электрические станции, работающие на органическом топливе, строят вблизи мест его добычи, а теплоэлектроцентрали размещают вблизи потребителей тепла – промышленных предприятий и жилых массивов. ТЭЦ также работают на органическом топливе, но в отличие от КЭС вырабатывают как электрическую, так и тепловую энергию в виде горячей воды и пара для производственных и теплофикационных целей. К основным видам топлива этих электростанций относятся: твердое – каменные угли, антрацит, полуантрацит, бурые угли, торф, сланцы; жидкое – мазут и газообразное – природный, коксовый, доменный и т.п. газ.

Таблица 1.2. Выработка электроэнергии в мире

Показатель

2010 г. (прогноз)

Доля общей выработки по электростанциям, % АЭС

ТЭС на газе

ТЭС на мазуте

Выработка электроэнергии по регионам, %

Западная Европа

Восточная Европа Азия и Австралия Америка

Средний Восток и Африка

Установленная мощность электростанций в мире (всего), ГВт

В том числе, % АЭС

ТЭС на газе

ТЭС на мазуте

ТЭС на угле и прочих видах топлива

ГЭС и ЭС на других, возобновляемых, видах топлива

Выработка электроэнергии (суммарная),

млрд. кВт·ч


Атомные электростанции преимущественно конденсационного типа используют энергию ядерного топлива.

В зависимости от типа теплосиловой установки для привода электрогенератора электростанции подразделяются на паротурбинные (ПТУ), газотурбинные (ГТУ), парогазовые (ПГУ) и электростанции с двигателями внутреннего сгорания (ДЭС).

В зависимости от длительности работы ТЭС в течение года по покрытию графиков энергетических нагрузок, характеризующихся числом часов использования установленной мощностиτ у ст , электростанции принято классифицировать на: базовые (τ у ст > 6000 ч/год); полупиковые (τ у ст = 2000 – 5000 ч/год); пиковые (τ у ст < 2000 ч/год).

Базовыми называют электростанции, несущие максимально возможную постоянную нагрузку в течение большей части года. В мировой энергетике в качестве базовых используют АЭС, высокоэкономические КЭС, а также ТЭЦ при работе по тепловому графику. Пиковые нагрузки покрывают ГЭС, ГАЭС, ГТУ, обладающие маневренностью и мобильностью, т.е. быстрым пуском и остановкой. Пиковые электростанции включаются в часы, когда требуется покрыть пиковую часть суточного графика электрической нагрузки. Полупиковые электростанции при уменьшении общей электрической нагрузки либо переводятся на пониженную мощность, либо выводятся в резерв.

По технологической структуре тепловые электростанции подразделяются на блочные и неблочные. При блочной схеме основное и вспомогательное оборудование паротурбинной установки не имеет технологических связей с оборудованием другой установки электростанции. Для электростанций на органическом топливе при этом к каждой турбине пар подводится от одного или двух соединенных с ней котлов. При неблочной схеме ТЭС пар от всех котлов поступает в общую магистраль и оттуда распределяется по отдельным турбинам.



На конденсационных электростанциях, входящих в крупные энергосистемы, применяются только блочные системы с промежуточным перегревом пара. Неблочные схемы с поперечными связями по пару и воде применяются без промежуточного перегрева.

Принцип работы и основные энергетические характеристики тепловых электростанций

Электроэнергию на электростанциях производят за счет использования энергии, скрытой в различных природных ресурсах (уголь, газ, нефть, мазут, уран и др.), по достаточно простому принципу, реализовывая технологию преобразования энергии. Общая схема ТЭС (см. рис. 1.1) отражает последовательность такого преобразования одних видов энергии в другие и использования рабочего тела (вода, пар) в цикле тепловой электростанции. Топливо (в данном случае уголь) сгорает в котле, нагревает воду и превращает ее в пар. Пар подается в турбины, преобразующие тепловую энергию пара в механическую энергию и приводящие в действие генераторы, вырабатывающие электроэнергию (см. раздел 4.1).

Современная тепловая электростанция – это сложное предприятие, включающее большое количество различного оборудования. Состав оборудования электростанции зависит от выбранной тепловой схемы, вида используемого топлива и типа системы водоснабжения.

Основное оборудование электростанции включает: котельные и турбинные агрегаты с электрическим генератором и конденсатором. Эти агрегаты стандартизованы по мощности, параметрам пара, производительности, напряжению и силе тока и т.д. Тип и количество основного оборудования тепловой электростанции соответствуют заданной мощности и предусмотренному режиму её работы. Существует и вспомогательное оборудование, служащее для отпуска теплоты потребителям и использования пара турбины для подогрева питательной воды котлов и обеспечения собственных нужд электростанции. К нему относится оборудование систем топливоснабжения, деаэрационно-питательной установки, конденсационной установки, теплофикационной установки (для ТЭЦ), систем технического водоснабжения, маслоснабжения, регенеративного подогрева питательной воды, химводоподготовки, распределения и передачи электроэнергии (см. раздел 4).

На всех паротурбинных установках применяется регенеративный подогрев питательной воды, существенно повышающий тепловую и общую экономичность электростанции, поскольку в схемах с регенеративным подогревом потоки пара, отводимые из турбины в регенеративные подогреватели, совершают работу без потерь в холодном источнике (конденсаторе). При этом для одной и той же электрической мощности турбогенератора расход пара в конденсаторе снижается и в результате к.п.д. установки растет.

Тип применяемого парового котла (см. раздел 2) зависит от вида топлива, используемого на электростанции. Для наиболее распространённых топлив (ископаемые угли, газ, мазут, фрезторф) применяются котлы с П-, Т-образной и башенной компоновкой и топочной камерой, разработанной применительно к тому или иному виду топлива. Для топлив с легкоплавкой золой используются котлы с жидким шлакоудалением. При этом достигается высокое (до 90%) улавливание золы в топке и снижается абразивный износ поверхностей нагрева. Из этих же соображений для высокозольных топлив, таких как сланцы и отходы углеобогащения, применяются паровые котлы с четырехходовой компоновкой. На тепловых электростанциях используются, как правило, котлы барабанной или прямоточной конструкции.

Турбины и электрогенераторы согласуются по шкале мощности. Каждой турбине соответствует определенный тип генератора. Для блочных тепловых конденсационных электростанций мощность турбин соответствует мощности блоков, а число блоков определяется заданной мощностью электростанции. В современных блоках используются конденсационные турбины мощностью 150, 200, 300, 500, 800 и 1200 МВт с промежуточным перегревом пара.

На ТЭЦ применяются турбины (см. подраздел 4.2) с противодавлением (типа Р), с конденсацией и производственным отбором пара (типа П), с конденсацией и одним или двумя теплофикационными отборами (типа Т), а также с конденсацией, промышленным и теплофикационными отборами пара (типа ПТ). Турбины типа ПТ также могут иметь один или два теплофикационных отбора. Выбор типа турбины зависит от величины и соотношения тепловых нагрузок. Если преобладает отопительная нагрузка, то в дополнение к турбинам ПТ могут быть установлены турбины типа Т с теплофикационными отборами, а при преобладании промышленной нагрузки – турбины типов ПР и Р с промышленным отбором и противодавлением.

В настоящее время на ТЭЦ наибольшее распространение имеют установки электрической мощностью 100 и 50 МВт, работающие на начальных параметрах 12,7 МПа, 540–560°С. Для ТЭЦ крупных городов созданы установки электрической мощностью 175–185 МВт и 250 МВт (с турбиной Т-250-240). Установки с турбинами Т-250-240 являются блочными и работают при сверхкритических начальных параметрах (23,5 МПа, 540/540°С).

Особенностью работы электрических станций в сети является то, что общее количество электрической энергии, вырабатываемой ими в каждый момент времени, должно полностью соответствовать потребляемой энергии. Основная часть электрических станций работает параллельно в объединенной энергетической системе, покрывая общую электрическую нагрузку системы, а ТЭЦ одновременно и тепловую нагрузку своего района. Есть электростанции местного значения, предназначенные для обслуживания района и не подсоединенные к общей энергосистеме.

Графическое изображение зависимости электропотребления во времени называютграфиком электрической нагрузки . Суточные графики электрической нагрузки (рис.1.5) меняются в зависимости от времени года, дня недели и характеризуются обычно минимальной нагрузкой в ночной период и максимальной нагрузкой в часы пик (пиковая часть графика). Наряду с суточными графиками большое значение имеют годовые графики электрической нагрузки (рис. 1.6), которые строятся по данным суточных графиков.

Графики электрических нагрузок используются при планировании электрических нагрузок электростанций и систем, распределении нагрузок между отдельными электростанциями и агрегатами, в расчетах по выбору состава рабочего и резервного оборудования, определении требуемой установленной мощности и необходимого резерва, числа и единичной мощности агрегатов, при разработке планов ремонта оборудования и определении ремонтного резерва и др.

При работе с полной нагрузкой оборудование электростанции развивает номинальную или максимально длительную мощность (производительность), которая является основной паспортной характеристикой агрегата. На этой наибольшей мощности (производительности) агрегат должен длительно работать при номинальных значениях основных параметров. Одной из основных характеристик электростанции является ее установленная мощность, которая определяется как сумма номинальных мощностей всех электрогенераторов и теплофикационного оборудования с учетом резерва.

Работа электростанции характеризуется также числом часов использования установленной мощности , которое зависит от того, в каком режиме работает электростанция. Для электростанций, несущих базовую нагрузку, число часов использования установленной мощности составляет 6000–7500 ч/год, а для работающих в режиме покрытия пиковых нагрузок – менее 2000–3000 ч/год.

Нагрузку, при которой агрегат работает с наибольшим к.п.д., называют экономической нагрузкой. Номинальная длительная нагрузка может быть равна экономической. Иногда возможна кратковременная работа оборудования с нагрузкой на 10–20% выше номинальной при более низком к.п.д. Если оборудование электростанции устойчиво работает с расчетной нагрузкой при номинальных значениях основных параметров или при изменении их в допустимых пределах, то такой режим называется стационарным.

Режимы работы с установившимися нагрузками, но отличающимися от расчетных, или с неустановившимися нагрузками называют нестационарными или переменными режимами. При переменных режимах одни параметры остаются неизменными и имеют номинальные значения, другие – изменяются в определенных допустимых пределах. Так, при частичной нагрузке блока давление и температура пара перед турбиной могут оставаться номинальными, в то время как вакуум в конденсаторе и параметры пара в отборах изменятся пропорционально нагрузке. Возможны также нестационарные режимы, когда изменяются все основные параметры. Такие режимы имеют место, например, при пуске и остановке оборудования, сбросе и набросе нагрузки на турбогенераторе, при работе на скользящих параметрах и называются нестационарными.

Тепловая нагрузка электростанции используется для технологических процессов и промышленных установок, для отопления и вентиляции производственных, жилых и общественных зданий, кондиционирования воздуха и бытовых нужд. Для производственных целей обычно требуется пар давлением от 0,15 до 1,6 МПа. Однако, чтобы уменьшить потери при транспортировке и избежать необходимости непрерывного дренирования воды из коммуникаций, с электростанции пар отпускают несколько перегретым. На отопление, вентиляцию и бытовые нужды ТЭЦ подает обычно горячую воду с температурой от 70 до 180°С.

Тепловая нагрузка, определяемая расходом тепла на производственные процессы и бытовые нужды (горячее водоснабжение), зависит от наружной температуры воздуха. В условиях Украины летом эта нагрузка (так же как и электрическая) меньше зимней. Промышленная и бытовая тепловые нагрузки изменяются в течение суток, кроме того, среднесуточная тепловая нагрузка электростанции, расходуемая на бытовые нужды, меняется в рабочие и выходные дни. Типичные графики изменения суточной тепловой нагрузки промышленных предприятий и горячего водоснабжения жилого района приведены на рис 1.7 и 1.8.

Эффективность работы ТЭС характеризуется различными технико-экономическими показателями, одни из которых оценивают совершенство тепловых процессов (к.п.д., расходы теплоты и топлива), а другие характеризуют условия, в которых работает ТЭС. Например, на рис. 1.9 (а ,б ) приведены примерные тепловые балансы ТЭЦ и КЭС.

Как видно из рисунков, комбинированная выработка электрической и тепловой энергии обеспечивает значительное повышение тепловой экономичности электростанций благодаря уменьшению потерь теплоты в конденсаторах турбин.

Наиболее важными и полными показателями работы ТЭС являются себестоимости электроэнергии и теплоты.

Тепловые электростанции имеют как преимущества, так и недостатки в сравнении с другими типами электростанций. Можно указать следующие достоинства ТЭС:

  • относительно свободное территориальное размещение, связанное с широким распространением топливных ресурсов;
  • способность (в отличие от ГЭС) вырабатывать энергию без сезонных колебаний мощности;
  • площади отчуждения и вывода из хозяйственного оборота земли под сооружение и эксплуатацию ТЭС, как правило, значительно меньше, чем это необходимо для АЭС и ГЭС;
  • ТЭС сооружаются гораздо быстрее, чем ГЭС или АЭС, а их удельная стоимость на единицу установленной мощности ниже по сравнению с АЭС.
  • В то же время ТЭС обладают крупными недостатками:
  • для эксплуатации ТЭС обычно требуется гораздо больше персонала, чем для ГЭС, что связано с обслуживанием весьма масштабного по объему топливного цикла;
  • работа ТЭС зависит от поставок топливных ресурсов (уголь, мазут, газ, торф, горючие сланцы);
  • переменность режимов работы ТЭС снижают эффективность, повышают расход топлива и приводят к повышенному износу оборудования;
  • существующие ТЭС характеризуются относительно низким к.п.д. (в основном до 40%);
  • ТЭС оказывают прямое и неблагоприятное воздействие на окружающую среду и не являются эколигически «чистыми» источниками электроэнергии.
  • Наибольший ущерб экологии окружающих регионов приносят электростанции, работающие на угле, особенно высокозольном. Среди ТЭС наиболее «чистыми» являются станции, использующие в своем технологическом процессе природный газ.

По оценкам экспертов, ТЭС всего мира выбрасывают в атмосферу ежегодно около 200–250 млн. тонн золы, более 60 млн. тонн сернистого ангидрида, большое количество оксидов азота и углекислого газа (вызывающего так называемый парниковый эффект и приводящего к долгосрочным глобальным климатическим изменениям), поглощая большое количество кислорода. Кроме того, к настоящему времени установлено, что избыточный радиационный фон вокруг тепловых электростанций, работающих на угле, в среднем в мире в 100 раз выше, чем вблизи АЭС такой же мощности (уголь в качестве микропримесей почти всегда содержит уран, торий и радиоактивный изотоп углерода). Тем не менее, хорошо отработанные технологии строительства, оборудования и эксплуатации ТЭС, а также меньшая стоимость их сооружения приводят к тому, что на ТЭС приходится основная часть мирового производства электроэнергии. По этой причине совершенствованию технологий ТЭС и снижению отрицательного влияния их на окружающую среду во всем мире уделяется большое внимание (см. раздел 6).

Для полноценного функционирования промышленных предприятий, для обеспечения бытовых нужд и остальных потребностей современного человека всем нам необходима электрическая энергия. Мощным источником электроэнергии были и остаются тепловые электростанции.

Из-за негативного экологического влияния ТЭС на окружающую среду, а также, из-за угрозы исчерпания полезных ископаемых, используемых в качестве топлива при работе ТЭС, человечество пытается переориентировать энергетику на другие – возобновляемые источники тепла. Однако процесс этот сложный и не такой быстрый, как хотелось бы. Поэтому тепловые энергетические установки по-прежнему поставляют большую часть электричества, необходимого человечеству.

ПРИНЦИП РАБОТЫ

Для генерации электричества ТЭС необходимо органическое топливо, примером которого могут служить нефть, природный газ, уголь. Чтобы добыть скрытую в этих природных ресурсах энергию, их сжигают. В процессе этого сжигания выделяется тепло, которое используется для нагрева воды до состояния пара. Этот пар воздействует на турбину, вызывая её вращение, а та, в свою очередь, приводит в действие электрогенератор, благодаря которому вырабатывается электрический ток.

ВИДЫ ТЭС

По назначению тепловые электрические станции могут быть такими, которые предназначены преимущественно для производства электричества (их принято называть КЭС – конденсационными электрическими станциями), и такими, которые могут в большом объёме отпускать теплоту для промышленных или отопительных целей к объектам, расположенным на сравнительно небольшом расстоянии (ТЭЦ – теплоэлектроцентрали). Те же теплоэлектростанции, на которых пар получается за счёт энергии расщепления ядерного топлива, называются атомными (АЭС)

ТЭС и ЭКОЛОГИЯ

Когда теплоэлектростанции только начали создаваться и строиться, мало кого волновал тот вред, который они наносят окружающей среде в процессе своей работы. Однако со временем экологический фактор приобрёл важнейшее значение в развитии теплоэнергетических установок. Ведь сейчас мировые организации, контролирующие состояние окружающей среды, предъявляют жёсткие и обоснованные требования к экологической безопасности тепловых электростанций. И поэтому перед инженерами и учёными, занимающимися теплоэнергетическими исследованиями, возникло множество задач по усовершенствованию теплоэнергетического оборудования.

Прежде всего, необходимо оснащать ТЭС специальными фильтрами, поскольку при работе теплоэлектростанций выделяется огромное количество загрязняющих веществ.

Это и диоксид серы, который становится причиной кислотных дождей. И оксиды азота – виновники смога и «составляющие» кислотных дождей, которые в повышенных дозах могут оказывать пагубное воздействие на здоровье людей.

Также, в результате работы ТЭС в окружающую среду попадают бензопирен, сероводород и тяжёлые металлы, которые крайне опасны в дозах, превышающих пдк, и для человека, и для других живых организмов.

Кроме того, работа данных энергоустановок сопровождается образованием большого количества золы, которая, попадая в атмосферу, может вызывать заболевания дыхательных органов у людей.

Поэтому очень важно устанавливать качественные фильтры на теплоэнергетических установках, чтобы минимизировать выбросы вредных веществ в воздух, а также, применять ряд других мер по обеспечению экологической безопасности данных предприятий.

БУДУЩЕЕ ТЭС

Для того чтобы у ТЭС было будущее нужен достаточный запас топлива, необходимого для их функционирования. По приблизительным оценкам специалистов топлива органического происхождения должно хватить на 100-150 лет, но при этом добывать его будет становиться всё сложнее из-за того, что надо будет достигать глубоко расположенных залежей.

Ограниченность запасов топлива является движущим фактором для применения в тепловой энергетике энергосберегающих технологий, позволяющих экономить ресурсы.

Также, ТЭС будущего должны быть максимально безопасными в экологическом плане. Для этого теплоэнергетики всего мира занимаются разработкой систем, позволяющих минимизировать вред тепловых электрических станций.

Роль тепловых электрических станций в обеспечении человечества электроэнергией также значима, как и в прежние десятилетия. Несмотря на вред, наносимый экологии выбросами, производимыми ТЭС в процессе своего функционирования, отказаться от их использования при современном уровне развития альтернативных отраслей энергетики не представляется возможным. Зато есть возможность подарить новое дыхание теплоэнегетике, интенсифицируя усилия по усовершенствованию старых тепловых энергоустановок и по строительству новых, сконструированных с учётом новых высоких стандартов экологической безопасности.

Поделиться: